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Abstract. We present the ballistic quantum transport of a p-n-p bilayer silicene junction in the
presence of spin-orbit coupling and electric field using a four-band model. The transfer-matrix
approach has been implemented to evaluate the electron transmission. A Mexican-hat shape of
low-energy spectrum is observed similarly to biased bilayer graphene. We show that while bilayer
silicene shares some physics with bilayer graphene, it has many intriguing phenomena that have
not been reported for the latter. First, there is a significantly non-zero transmission in the Mexican
hat, implying the existence of a confined state within the Mexican hat. Second, when the incident
energy is below the potential height, the transmission cloaking of this confined state results in a
strong oscillation of conductance. Finally, when the incident energy is above the potential height,
unlike monolayer silicene the conductance increases with the rise of electric field.
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I. INTRODUCTION

Unlike monolayer graphene, bilayer graphene has a parabolic dispersion relation and no
Klein tunneling is observed [1,2]. In a certain region of incident energy, the chirality mismatch of
states inside and outside a p-n-p junction leads to a cloaking of transmission [3, 4]. More interest-
ingly, applying different electrostatic potentials at the two layers of bilayer graphene, called biased
bilayer graphene, results in a tunable band gap and Mexican-hat shape of low-energy spectrum [5].
Great efforts both in theory and experiment have been devoted to reproduce and explain these phe-
nomena [5–7]. Thanks to its peculiar electronic structures, biased bilayer graphene was proposed
as a new platform for electronic devices, such as the low-voltage tunnel switches [8]. Moreover,
some recent studies have revealed a hydrogen-like bound state within Mexican hat opening a new
door for biased bilayer graphene applications [9].

While sharing some intriguing properties of graphene, silicene, a two-dimensional allotrope
of silicon, has some superior advantages compared to graphene, such as strong spin-orbit coupling
(SOC) and buckled honeycomb structure. While SOC enables us to realize the quantum spin
Hall effect [10], the buckled honeycomb structure help us control the bulk band gap of silicene
by applying an external electric field [11]. Topological phase transitions and quantum transport
properties of monolayer silicene in the presence of external fields, such as electric and exchange
fields, and circularly polarized light in the off-resonant regime, have been extensively reported
[12–14].

Apart from monolayer, bilayer silicene were also successfully synthesized in experiment.
It is expected that bilayer silicene can provide some unusual physics that cannot be found in
monolayer. Recently, there have been many theoretical works focusing on the topological phase
transitions, magneto-optical, and optoelectronic properties of bilayer silicene, for instances, see
Refs. [15–17]. Nevertheless, its quantum transport properties still remain unexplored. As seen
from bilayer graphene, the two-band model is insufficient in the presence of a strong interlayer
bias even at the Dirac point [4,5]. Therefore, the four-band model is essential in order to properly
describe the low-energy physics of bilayer silicene.

In this paper, we investigate ballistic transport properties of a p-n-p bilayer silicene junction
in the presence of a transverse electric field using the four-band low-energy model. The transfer-
matrix approach was implemented to evaluate the electron transmission. Some novel quantum-
transport properties of bilayer silicene that have not been reported for monolayer silicene and
bilayer graphene will be discussed.

II. THEORY

II.1. Model and electronic structure
While there are four possibilities of AB bilayer stacking [15], we only consider the forward

stacking configuration displayed in Fig. 1 and the same investigation can be done for the other
configurations. As seen in the figure, bilayer silicene are composed of two silicene monolayers
having an in-plane interatomic distance a = 2.46 Å. Each layer has a buckled structure consisting
of two nonequivalent sublattices denoted by A and B. The intralayer atomic distance is 2l with
l = 0.23 Å. The spin-orbit coupling λSO and the intralayer coupling between A and B atoms t0 are
3.9 meV and 1.6 eV, respectively. The two layers are stacked according to the A2B1 stacking, e.g.
B1 right above A2, with a distance 2L. In this work, L is fixed at 1.46 Å. As shown in Fig. 1, the
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perpendicular interlayer coupling between the A2 and B1 atoms is tA2B1 = t⊥, while those between
the other interlayer atom pairs are tA1B2 = t3 and tA1A2 = tB1B2 = t4. The interlayer skew hopping
term t3 results in a so-called trigonal warping occurring only at very low energies. The second
skew hopping term, t4, has a tiny impact on the electronic properties. Therefore, we have not
included these two hopping terms in the current work.

t4

t3

t0

t T

A1

A2

B1

B2

L+l

L-l

-L+l

-L-l

Ez

Fig. 1. The unit cell of bilayer silicene with the forward AB stacking configuration.
Green and orange indicate the two sublattices A and B of monolayer, respectively. The
interlayer and intralayer sublattice distances are 2L and 2l, respectively. While t0 is the
intralayer hoping, t⊥ is the perpendicular interlayer hoping. In the current work, two
interlayer skew hoping t3 and t4 are not included.

Following the continuum nearest-neighbor tight-binding formalism, the effective Hamil-
tonian near the Dirac points and the eigenstate are given by [15]

H =


U +m+ vFπ t⊥ 0

vFπ† U +m− 0 0
t⊥ 0 U−m+ vFπ†

0 0 vFπ U−m−

 , Ψ =


ψA1

ψB1

ψB2

ψA2

 , (1)

where vF ≈ 5.5×105 m/s is the Fermi velocity of the charge carries in silicene, π = px+ ipy and ppp
is the momentum operator, U is an external potential. The terms m± represent the contribution of
SOC (λSO) and electric field Ez. For the forward stacking configuration considered here, we have
m± =∓λSO +(L± l)Ez. Using dimensionless variables: ε = (E−U)/t⊥ and ky→ h̄vFky/t⊥, we
can write the eigenvalues E of the Hamiltonian H as follows,

ε= η
1√
2

√
β +θ

√
β 2−4α, (2)

with

β = 1+m2
++m2

−+2k2,

α = (k2−m+m−)2 +m2
−,

k =
√

k2
x + k2

y .
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In Eq. (2), while the index η =±1 corresponds to conducting (+) and valence (–) bands, the index
θ = ±1 represents the low-energy (–) and high-energy (+) branches. As seen in the left panel of
Fig. 2, the low-energy branches (θ = −1) of band structure (2) displays an unique Mexican-hat
shape.
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FIG. 3. Band gaps of monolayer and bilayer silicene as functions of
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FIG. 4. Transmission spectra of di↵erent modes as functions of incident energy and transverse wave vector ky in the presence of SOC and
electric field (�S O, Ez) = (0.1, 0.5). White dashed line represents the four-band dispersion spectrum, white the black dashed line is the border
of . The red arrows indicate the non-zero transmission within the Mexican-hat region. The height of potential barrier is 1.5t?.
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Fig. 2. Left panel: band structures of bilayer silicene with λSO = 0.1t⊥, Ez = 0.5t⊥, and
U = 0. The dashed black curves are the two-band spectrum. Right panel: the band gap
of bilayer silicene as functions of electric field Ez. For comparison, the monolayer result
is also plotted.

The right panel of Fig. 2 represents the variation of bilayer silicene band gap with the
electric field Ez. For comparison, the monolayer result is also provided. Critical points where the
band gaps are closed are observed for both systems. However, it is lower for the bilayer than for
the monolayer. For Ez > t⊥, while the monolayer band gap linearly increases beyond the critical
point, the bilayer one is almost unchanged.

II.2. Ballistic transport
We now model a one-dimensional square well potential U(x) of a width d applied equally

to the two layers of bilayer silicene as follows

U(x) =
{

U if 0≤ x≤ d (region 2);
0 if x< 0 or x> d (region 1 or 3). (3)

Similarly, the electric field is only applied to the region 2. With the translational invariance along
the y direction, i.e. the momentum ky is unchanged during electron motion, the wave function can
be written as Ψ(x,y) = ψ(x)eikyy. Solving the time-independent Schrodinger equation HΨ = EΨ

we obtain the eigenstates, that are given as

ψ(x) =


ψA1

ψB1

ψB2

ψA2

= PQ(x)C, (4)
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Here, C are wavefunction coefficients, Q(x) = diag(eik+x,e−ik+x,eik−x,e−ik−x) and

P =


1 1 1 1
f++ f+− f−+ f−−
g+ g+ g− g−

h++ h+− h−+ h−−

 . (5)

with,

f η

± = (±kη − iky)/(ε−m−),

gη = [−k2
η − k2

y + γ−]/(ε−m−),

hη

± = [−k2
η − k2

y + γ−](±kη + iky)/(ε
2−m2

−),

where

kη =

√
γ++ γ−

2
+η
√

∆− k2
y , (6)

and

γ± = (ε±m−)(ε±m+),

∆ =
(γ++ γ−)

2

4
+(ε2−m2

−).

kη is the wave vector in the x direction, with η = ±1. It is derived from the dispersion relation
(Eq. (2)). The index η now corresponds to the pseudospin state of particles. Whenever ε ≥ λSO,
which is the case we consider in this paper, the wave vector k+ is always real. The wave vector k−,
however, can be either real or imaginary due to the relation of the value ε to λSO, and ky. For the

normal incident (ky = 0), when λSO < ε <
√

1+λ 2
SO, k− is imaginary. Therefore, the propagation

only happens for the k+ mode. When ε >
√

1+λ 2
SO, k− becomes real. As a result, the propagation

is carried out by both modes. Corresponding to these two distinct propagate modes, there are
two non-scattering transmission channels as T+

+ and T−− for propagation via k+ and k− modes,
respectively. There also exists two others scattering channels: T+

− for scattering from k+ to k− and
T−+ for scattering from k− to k+.

In the limit ε� t⊥ and with an assumption that m± and ε are the same order of magnitude,
by neglecting the second order of ε and m± in Eq. (6), the two-band model can be obtained [4, 5].
As displayed in the left panel of Fig. 2, the two-band model (the dashed black curves) is unable to
yield the Mexican-hat shape. We therefore will not discuss it further in this paper.

The continuity of wave functions at x = 0 and x = d gives the boundary conditions ψ1(0) =
ψ2(0) and ψ2(d) = ψ3(d). The transfer matrix M can be then written as

M = P−1
1 P2Q

−1
2 (d)P−1

2 P3Q3(d), (7)

and the components of the vector C in the region I and III are given:

Cη

I =


δη ,1
rη

+

δη ,−1
rη

−

 , and Cη

III =


tη

+

0
rη

−
0

 , (8)
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with η =±1. By taking into account the change in velocity of the waves scattering into different
modes, the transmissions T are given by

T η

± =
k±
kη

|tη

±|2. (9)

Finally, according to Landauer-Büttiker formalism, the normalized spin-valley dependent
conductance at zero temperature is evaluated as

G =
1
2

∫
π/2

−π/2
∑T±± (E,φ)cos(φ)dφ , (10)

where φ is the incident angle.

III. NUMERICAL RESULTS

In unbiased bilayer graphene, the cloaking effect of transmission through a barrier was
observed at the normal incidence [3, 4]. This can be briefly explained as follows. Let us consider
a propagation via the k+ mode as displayed in Fig. 3. For the normal incidence (ky = 0), the
pseudospin is conserved. This means that the k+ mode outside the barrier can only couple with
the k+ mode inside the barrier. However, the energy spectrum inside the barrier is shifted, leading
to the mismatch between k+ modes inside and outside the barrier. Even though there are k−
states available inside the barrier, the propagation via the k+ mode through the barrier is unlikely,
resulting in the transmission cloaking inside the barrier.

k- 

k+ 

Fig. 3. Schematic representation of energy spectra of unbiased bilayer graphene inside
and outside the potential barrier. The arrow indicates the direction of propagation. The
transmission cloaking of k+ mode occurs in the gray region where there are no available
k+ states inside the barrier.
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Fig. 4. Transmission spectra of different modes (T+

+ ,T
+
− = T−+ , and T−− ) as functions of

incident energy and transverse wave vector ky in the presence of SOC λSO = 0.1t⊥ and
electric field Ez = 0.5t⊥. The white dashed curves are the four-band dispersion spectra,
whereas the black dashed curves are the border between the propagating and evanescent
regions. The red arrows indicate the non-zero transmission within the Mexican hat. The
height of potential barrier is 1.5t⊥.

The transmission spectra of bilayer silicene in the presence of SOC and electric field are
displayed in Fig. 4. Since the electric field Ez modifies the particles’ momenta kη inside the barrier
(Eq. (6)), the cloaking in the T+

+ channel splits into two bpranches at finite ky. The splitting of the
transmission cloaking was also found for bilayer graphene in the presence of interlayer bias [4].
One fascinating feature that was not reported for bilayer graphene is that transmission within
the Mexican hats is significantly non-zero for all channels indicated by red arrows in the figure,
implying the existence of confined states in these regions, called the Mexican-hat confined states.
We would like to emphasize that one should not be confused with states confined in a potential
barrier, the Mexican-hat confined state is formed in the Mexcian-hat region of band structures
under an external electric field.

Let us now investigate the conductance of bilayer silicene. As seen in Fig. 2, there is a
linear dependence of monolayer band gap on electric field, resulting in a monotonic decrease of
monolayer conductance. Based on what we have observed for bilayer silicene, it is expected that
new phenomena can be observed. Fig. 5a represents the conductance as a function of incident en-
ergy E and electric field Ez when E <U . Interestingly, unlike monolayer, the bilayer conductance
strongly oscillates with respect to Ez. As seen in Fig. 4, for E <U the conductance is dominated
by the channel T+

+ . Therefore, in order to get an insight into the oscillation of the conductance,
we plot in Fig. 6 the T+

+ (E,ky) spectrum at three selected Ez values corresponding to two peaks
(0.9t⊥ and 1.05t⊥) and one valley (0.98t⊥) of the conductance. Clearly, the T+

+ transmission of
valence band is mainly contributed by the confined state in the Mexican hat. Strong Fabry-Perot
resonances of transmission spectra imply the discretization of these states. Furthermore, the trans-
mission within the Mexican hat also oscillates with respect to the wave vector ky. At Ez = 0.9t⊥,
the large cloaking region around the normal incidence (ky = 0) significantly suppresses the con-
ductance. On the other hand, at Ez = 0.98t⊥, the cloaking shifts to finite ky and is not significant,
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Fig. 5. Conductance as a function of incident energy E and electric field Ez for E below
(a) and above (b) the potential height that is set at U = 1.5t⊥.

leading to an enhancement of conductance. Finally, at Ez = 1.05t⊥, the conductance is again low-
ered due to a large cloaking at the normal incidence. In general, one can conclude that the cloaking
at the normal incidence within the Mexican hat causes the oscillation of conductance.

What is the origin of the transmission cloaking in the Mexican hat? It is believed not
due to a shift of energy spectrum as in the case of barrier potential discussed above. Recently,
Skinner and coworkers [9] have found a hydrogen-like bound state within Mexican hat of biased
bilayer graphene. They showed that the bound state’s electron density strongly oscillates with
respect to the wave vector k as the applied bias increases. Following this argument, we may
attribute the cloaking of the confined state inside Mexican hat to the oscillation of its electron
density. For example, at Ez = 0.9t⊥, the confined state’s electron density is almost zero around
the normal incidence. Therefore, it does not show up in the normal incidence transmission. In
contrast, the confined state’s electron density around the normal incidence is largely non-zero at
Ez = 0.98t⊥. As a result, the normal incidence propagation via Mexican hat is allowed. In order
to more convincingly demonstrate the cloaking of Mexican-hat confined state, an analytic relation
between its electron density and electric field is essentially derived. However, it is beyond the
scope of the current work and we would leave it for a future work.

Figure 5 represents the conductance as a function of incident energy E and electric field Ez
when E >U . Even though there is also a large transmission cloaking in the Mexican hat, the oscil-
lation of conductance is less significant than it is when E <U . As seen in Fig. 6, the transmission
for the conducting band is contributed from both states inside and outside the Mexican hat. On the
other hand, the band gap tends to a saturation when Ez > 1.0t⊥ as seen in Fig. 2. Consequently,
unlike monolayer, enlarging the interlayer distance results in an increasing of conductance with
the electric field Ez.
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black dashed curves are the border between the propagating or evanescent regions. The
potential height U = 1.5t⊥.

IV. CONCLUSIONS

In conclusions, we have presented the ballistic transport of a p-n-p bilayer silicene junction
in the presence of both SOC and electric field using the four-band model and the transfer-matrix
approach. We observed the Mexican-hat shape of low-energy spectra similarly to biased bilayer
graphene. We found that the confined state produces the non-zero transmission within the Mexican
hat. Furthermore, the cloaking of this confined state results in a strong oscillation of conductance
with respect to electric field when the incident energy is below the potential height. On the other
hand, unlike monolayer, the conductance of bilayer silicene is slowly enhanced under electric field
when the incident energy is above the potential height. Our theoretical results are believed to be
useful for realistic applications of bilayer silicene in electronics, such as field effect transistors
or electronic switches. Working on an analytic relation between the Mexican-hat confined state’s
electron density and electric field is on progress.
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[11] N. D. Drummond, V. Zólyomi and V. I. Fal’ko, Phys. Rev. B 85 (2012) 075423.
[12] M. Ezawa, Phys. Rev. Lett. 109 (2012) 055502.
[13] M. Ezawa, Phys. Rev. Lett. 110 (2013) 026603.
[14] L. B. Ho and T. N. Lan, J. Phys. D: Appl. Phys. 49 (2016) 375106.
[15] M. Ezawa, J. Phys. Soc. Japan 81 (2012) 104713.
[16] H. Da, W. Ding and X. Yan, Appl. Phys. Lett. 110 (2017) 141105.
[17] B. Huang, H.-X. Deng, H. Lee, M. Yoon, B. G. Sumpter, F. Liu, S. C. Smith and S.-H. Wei, Phys. Rev. X 4 (2014)

021029.


	I. Introduction
	II. Theory
	II.1. Model and electronic structure
	II.2. Ballistic transport

	III. NUMERICAL RESULTS
	IV. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

