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Abstract. Folding of protein in vivo typically occurs in a solution highly crowded by macro-
molecules and in a confined space. It has been found that the effects of macromolecular crowding
and confinement are similar in terms of the enhancement of protein stability. However, these ef-
fects are often considered separately in theoretical and simulation studies. In this study, by using
coarse-grained models and Langevin dynamics, we show that the two effects are additive to each
other when they are both present. Both crowding and confinement give rise to the folding temper-
ature and the folding stability of protein. It is shown that the folding free energy change due to
crowding in the confined condition can be fitted to Minton scaled particle theory by assuming a
linear dependence of the effective radius of the protein unfolded state on the volume fraction of
crowders.
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I. INTRODUCTION

The cytosol of a living cell is crowded by a large number of macromolecules including
many proteins, ribonucleic acids (RNAs) and their soluble complexes, which occupy up to 40%
of the cytosolic volume. Furthermore, subcellular organelles create confining environments that
influence the dynamics of functional molecules. These crowded and confined conditions yield
significant impacts on the equilibria and rates of a variety of macromolecular reactions [1, 2].
Particularly, both crowding and confinement have been shown to increase the stability and the
folding rate of proteins. Certain types of cellular confinement, such as that of the ribosomal exit
tunnel [3, 4] and the cage of chaperonin [5, 6], are believed to functionally improve the folding
efficiency of proteins. Due to the necessity of identifying the effect for a particular type of condi-
tion, crowding and confinement are typically considered separately in theoretical and experimental
studies. Thus, it is not clear whether these effects add up or annihilate each other in conditions
where they coexist. In this paper, we will focus on studying the combined effect of macromolec-
ular crowding and confinement on protein stability. For the latter we are concerned with both the
thermal stability and the folding stability of protein. The thermal stability is associated with the
folding transition temperature (or folding temperature), whereas the folding stability corresponds
to the folding free energy, which is the free energy difference between the folded state and the
unfolded state of a protein.

The primary effect of both macromolecular crowding and confinement on protein folding is
excluded volume. In the case of crowding, the protein is enclosed in a floppy pocket of available
space left by the crowders, which fluctuates continuously due to the motions of crowders. In the
case of confinement, fixed boundaries rule out protein conformations which stick out from the
confined volume. In both cases, the volume exclusion would be adversely ‘felt’ by the unfolded
state more than the folded state due to differences in their effective sizes and their conformational
entropies, leading to an increase of the folded state’s stability. The strength of this excluded
volume effect has been assessed in many studies by theory, simulation and experiment.

The scaled particle theory (SPT) [7] allows one to obtain the free energy of inserting a hard
sphere of a given size in a hard sphere fluid. Minton [8] used the SPT to calculate the folding free
energy change as the difference between the insertion free energies for the folded and unfolded
states by assuming that both states are effective hard spheres. Zhou [9] calculated the free energy
for the folded state by using the SPT but obtained the free energy for the unfolded state through
a model which treats the unfolded state as a self-avoiding walk in presence of spherical crowders.
These theories, as well as a number of other SPT-based theories, predicted an increase of a few kBT
of the folding stability in crowded conditions. The free energy change and its dependence on the
crowder volume fraction, however, depend on the theory. Mittal and Best [10] recently reported
simulation results which mostly agree with Minton’s theory and suggested that the effective radius
of the unfolded state should be about 0.8 times its radius of gyration. By using theoretical models
with a Gaussian chain and also a self-avoiding walk under spherical confinement, Zhou showed
that strong confinement can stabilize protein by over 10 kBT [9]. All-atom simulations carried
out by Pande’s group showed that confinement alone stabilizes the folded state but confining both
protein and solvent may lead to solvent-mediated effect that destabilizes the folded state [11].

Experimentally, the stabilizing effect of inert excluded volume crowders on protein’s folded
state has been confirmed with a stability increase of 1-2 kBT by using synthetic polymer crowders
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Fig. 1. Sketch of the models of a protein and crowders confined in a spherical container.

such as Ficall [12], Dextran [13] and PEG [14]. Destabilizing effects, however, are observed for
two protein crowders, lyzozyme and bovine serium albumin (BSA), on the folding stability of chy-
motrypsin inhibitor 2 (CI2) [15], suggesting that the interaction between the crowder and the pro-
tein may enthalpically favor the protein unfolded state [16]. Confinements created by nanopores in
gel [17] and in reverse micelle [18] have been reported to increase the protein stability and folding
efficiency.

In the present work, we study the combined effect of macromolecular crowding and con-
finement on the folding stability by using molecular dynamics method with coarse-grained models.
Our consideration is limited to spherical crowder and spherical confinement. We also check if the
free energy change obtained from the simulations can be fitted to Minton’s scaled particle theory.

II. MODELS AND METHODS

II.1. Models and simulation method
We consider the same Go-like model [19] for protein as described in Ref. [3]. In this

model, amino acids are represented by spherical beads centered on the positions of the Cα atoms.
The beads forming a native contact, i.e. a contact present in the protein’s native state, interact
via the 6-12 Lennard-Jones (LJ) potential with the energy ε being the depth of the potential. On
the other hand, the beads that do not form a native contact interact via a short-ranged repulsive
potential. The model also includes local potentials for the bond angles and dihedral angles which
are centered on native values of these angles.

The crowders are modeled as soft spheres of radius Rc = 10 Å. Consider a system of one
protein and M crowders confined in a spherical container of radius Rwall (Fig. 1). The interactions
between any two crowders, between an amino acid and a crowder, between an amino acid and the
container wall, and between a crowder and the container wall are all repulsive at short distances
and are given by the truncated and shifted LJ potential

Vrep(r) =
{

4ε
[
(σ/r)12− (σ/r)6

]
+ ε , r ≤ 21/6σ

0 , r > 21/6σ ,
(1)
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where σ = 5 Å and r is the distance between an amino acid and the nearest virtual residue or
between the two nearest virtual residues. The virtual residues are considered to be of the same
size as amino acid and embedded under the surface of a crowder or the container wall (see Ref. [4]
for an illustrated definition of virtual residue). For comparison, we consider also the case of a
crowded condition but without confinement. For this case, the protein and crowders are enclosed
in a cubic box of a side length L = 100 Å with periodic boundary conditions for the crowders. The
crowder volume fraction is given by φc = M(4π/3)R3

c/V , where M is the number of crowders and
V is the volume of container or the simulation box.

The motions of the protein and the crowders follow the Langevin equation. We assume that
all amino acids have the same mass, m, while the crowder has the mass mc = m(Rc/Ra)

3, where
Ra = 2.5 Å is the Van der Waals radius of amino acid. The friction coefficients ζ for amino acid
and ζc for crowder are chosen according to the Stokes’s law for the friction of spherical object
in a viscous fluid, i.e. ζc = ζ (Rc/Ra). The Langevin equations are integrated by using a Verlet
algorithm introduced in Ref. [3] with time step ∆t = 0.002τ , where τ =

√
mσ2/ε is the time unit

in the system. In the simulations, we use ζ = 5mτ−1, for which the dynamics can be considered
as overdamped [20, 21].

For studying the folding properties, we consider the specific heat and the free energy of the
protein. The specific heat depends on temperature and is defined as

C(T ) =
〈E2〉−〈E〉2

kBT 2 , (2)

where kB is the Boltzmann constant, T is the absolute temperature in units of ε/kB, and E is the
energy of the protein (equal to the sum of the potential and kinetic energies of the protein). The
free energy of protein at a given temperature T is considered as a function of the fraction of native
contacts Q and is defined as

F(Q) =−kBT lnP(Q) , (3)
where Q = Nc/N∗c is the ratio of the number of native contacts of a given conformation (Nc)
to that of the native state (N∗c ), P(Q) is the probability of observing conformations having the
fraction of native contacts Q. Here, Q represents a folding reaction coordinate (0 ≤ Q ≤ 1) with
Q= 0 corresponding to a completely unfolded conformation and Q= 1 corresponding to the native
state. The averages of E and P(Q) are calculated from the equilibrium simulation data at various
temperatures with the use of the weighted histogram method [22].

The folding free energy is the free energy difference between the folded state (N) and the
unfolded state (U) and can be calculated from the free energy profile F(Q) as [10]

∆FN−U ≡ FN−FU =−kBT ln

( ∫ 1
Q‡

e−βF(Q)dQ∫ Q‡
0 e−βF(Q)dQ

)
, (4)

where Q‡ corresponds to the location of the transition state (‡) along Q. The change of folding
free energy due to the effect of crowders is given by

∆∆FN−U = ∆FN−U(φc)−∆FN−U(0), (5)

where ∆FN−U(φc) is the folding free energy found at the crowder volume fraction φc.
We calculate also the gyration radius RU

g of the unfolded state and the gyration radius RN
g

of the folded state from the simulations. These radii are defined as averages in the corresponding
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ensembles of unfolded and folded conformations:

RU
g =

∫ Q‡
0 Rg(Q)e−βF(Q)dQ∫ Q‡

0 e−βF(Q)dQ
, (6)

RN
g =

∫ 1
Q‡

Rg(Q)e−βF(Q)dQ∫ 1
Q‡

e−βF(Q)dQ
, (7)

where Rg(Q) is the mean radius of gyration of conformations having the fraction of native contacts
Q.

II.2. Minton scaled particle theory
The scaled particle theory of hard particle mixture fluid [23] gives an estimate of the

Helmholtz free energy change of inserting a hard sphere particle of radius R in a fluid of hard
sphere crowders of radius Rc as given by [8, 10]

∆F
kBT

=− ln(1−φc)+ρy(3+3y+ y2)+ρ
2y2(9/2+3y)+3ρ

3y3, (8)

where φc is the volume fraction of crowders, ρ = φc/(1−φc), and y = R/Rc. Minton [8] treated
the folded state and unfolded state as effective hard spheres. Assume that these spheres have the
radii aN and aU , respectively. The folding free energy change in Eq. (5) can be calculated as

∆∆FN−U = ∆FN−U(φc)−∆FN−U(0)
= FN(φc)−FU(φc)−FN(0)+FU(0)
= [FN(φc)−FN(0)]− [FU(φc)−FU(0)]
= ∆FN−∆FU , (9)

where ∆FN and ∆FU are obtained from Eq. (8) by putting R equal to aN and aU , respectively. In
our application of the scaled particle theory, aN is chosen to be equal to the radius of gyration of
the native conformation, whereas aU is a parameter for fitting with simulation data.

III. RESULTS AND DISCUSSION

For studying the effects of crowding and confinement on protein folding we consider two
small globular proteins, the B1 domain of protein G (GB1) with the protein data bank (PDB) code
1PGA and the Z domain of Staphylococcal protein (SpA) with PDB code 2SPZ. The GB1 has a
length of N = 56 amino acids whereas the SpA has the length of N = 58. For protein GB1, we
carried out the simulations of the protein in various crowded conditions of the crowder volume
fraction φc varied between 0 and 0.3, for the periodic boundary condition (pdb) and two cases of
spherical confinement with Rwall = 100 Å and Rwall = 50 Å. For protein SpA, only the crowding
and the confinement with Rwall = 100 Å are considered.

The specific heat is a fundamental thermodynamic function indicative of a phase transition.
In protein folding, the temperature of the peak of the specific heat as a function of temperature
corresponds to the folding transition temperature or folding temperature, Tf , whereas the height
of the peak, Cmax, signifies the degree of cooperativity of the folding transition [24]. Figure 2(a)
shows the dependence of the specific heat on temperature for protein GB1 obtained at different
values of crowder volume fraction under the confinement of Rwall = 50 Å. It is shown that as
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Fig. 2. (a) Comparison of the specific heats of the protein GB1 (PDB code: 1PGA)
for different crowder volume fractions φc (as indicated) under spherical confinement with
Rwall = 50 Å. (b, c) Dependence of the maximum of the specific heat Cmax (c) and the
folding temperature Tf (d) on φc for three conditions: with periodic boundary condition
(pbc) (squares), with spherical confinements of Rwall = 100 Å (circles) and 50 Å (tri-
angles). (d) Dependence of the free energy, F , on the fraction of native contacts, Q, at
temperature T = 0.94ε/kB for GB1 for different values of φc and with Rwall = 50 Å.

φc increases, the temperature of the specific heat peak also increases but the height of the peak
decreases. Thus, under crowded condition the protein is thermally more stable with an increased
folding temperature Tf but the folding transition is less cooperative than in condition without crow-
ders. Figures 2(b) and 2(c) show that Tf increases linearly and Cmax decreases linearly with φc for
all three types of boundary conditions, i.e. pbc or with confinements. Note that as the confinement
degree is gradually enforced, from no confinement (pbc) to the confinements of Rwall = 100 Å
and then Rwall = 50 Å, Tf also increases and Cmax decreases. Thus, the effects of crowding and
confinement add up to each other, both in terms of thermal stability and folding cooperativity of
protein. The slope of the linear dependence however slightly increases as one moves from the pbc
to the confined conditions, indicating some small enhancing effect of confinement on the effect of
crowding.



ADDITIVE EFFECTS OF MACROMOLECULAR CROWDING AND CONFINEMENT... 357

Figure 2(d) shows the dependence of the free energy on the fraction of native contacts Q at
a temperature slightly lower than Tf for the crowded and confined conditions as in Fig. 2(a). It is
shown that for φc ≤ 0.2 the free energy profile has two minima corresponding to the equilibrium
of the folded (at higher Q) and unfolded (at lower Q) states. These states are separated by a
barrier (the position of the maximum of the barrier corresponds to the transition state). At higher
φc the minimum corresponding to the unfolded state disappears. As φc increases the free energy
difference between the unfolded state and the folded state also increases, meaning that the absolute
value of the folding free energy also increases. Thus, it is shown that due to crowding the folded
state becomes thermodynamically more stable than the unfolded state. This result is in agreement
with many previous theoretical and simulation studies on the effect of crowding [8, 10], even
though our result was obtained with the combined crowded and confined conditions.

In Fig. 3(a), we show the dependence of the folding free energy change, ∆∆FN−U , on φc for
protein GB1 with three cases of boundary conditions, together with the fits of the simulation data
to the scaled particle theory. Here, all the free energy changes are shown with a reference to the
folding free energy of the protein in the unconfined condition without crowder, i.e. the pbc case
with φc = 0. Note that ∆∆FN−U decreases either when φc increases or when one moves from the
pbc condition (unconfined) to the confined boundary conditions of decreasing radius Rwall. This
result indicates that the effects of crowding and confinement are also additive to each other in
terms of the folding free energy change. Fig. 3(a) also shows that the scaled particle theory with
Minton’s approximation of effective hard spheres can be fitted quite well to the simulation results
given that the effective radius of the unfolded state, aU , depends linearly on φc. Fig. 3(b) shows
that both aU and the radius of gyration of the unfolded state, RU

g decrease linearly with φc but aU

decreases faster than RU
g . Furthermore, aU is always smaller than RU

g . Fig. 3(b) also shows that
the radius of gyration of the folded state, RN

g , is almost independent of φc. Fig. 3(c) shows that
the ratio aU/RU

g strongly depends on the boundary condition and also decreases with φc. For the
periodic boundary condition, the ratio aU/RU

g is about 0.8 and does not change significantly with
φc, in agreement with previous result of Mittal and Best [10]. For the two confined conditions,
we find that this ratio is larger than 0.8 and decreases with φc. In particular, for Rwall = 100 Å,
aU/RU

g ≈ 0.9 at φc = 0.05 and ≈ 0.83 at φc = 0.3. The corresponding values of this ratio are 0.93
at φc = 0.05 and 0.86 at φc = 0.3 for Rwall = 50 Å. Thus, under confinement, the effective hard
sphere radius of the unfolded state, as being considered in Minton theory, is closer to the radius of
gyration of this state than in unconfined condition. In other words, the hard sphere approximation
is better founded under confinement.

Figure 4 shows the dependence of ∆∆FN−U on φc for protein SpA under confinement with
Rwall = 100 Å and the fit to the scaled particle theory. The results are similar to the case of GB1,
except that the dependence of aU and RU

g on φc is weaker than for GB1 (Fig. 4(b)). For SpA, the
ration aU/RU

g is close to 0.82 and almost does not depend on φc (Fig. 4(c)).
Our results were obtained for small single-domain proteins which are two-state folders. It

can be expected that the properties found also apply for larger two-state proteins. For much longer
proteins, the native state typically is multi-domain; folding is autonomous for each domain but
the domains may also influence each other. In that case, the stabilizing effects of crowder and
confinement on the protein are still present but they can be quantitatively more complicated than
for small proteins.
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Fig. 3. (a) Dependence of the folding free energy change on the volume fraction of crow-
ders obtained at T = 0.94ε/kB for protein GB1 three cases of boundary conditions: peri-
odic boundary condition (pbc) (squares), spherical confinement with Rwall = 100 Å (cir-
cles) and spherical confinement with Rwall = 50 Å (triangles). The data points obtained
from the simulations are fitted to the scaled particle theory (lines) with an assumption that
aU depends linearly on φc. The native conformation of the protein is shown as inset. (b,c)
Dependence of the effective radius of the unfolded state, aU , and the radii of gyration, RN

g
and RU

g , of the folded and unfolded states, respectively, (b) and the ratio of aU/RU
g on φc

(c) on the crowder volume fraction φc for the three boundary conditions as shown in (a).

The dependence of the effective radius of the protein unfolded state on the volume fraction
of crowders can be explained based on consideration of osmotic pressure. The osmotic pressure
induced by crowders increases linearly with the crowders volume fraction. One may consider the
unfolded state as a spherical balloon with an osmotic pressure inside the balloon induced by the
unfolded chain itself. If the osmotic pressure inside the balloon depends linearly on the balloon
radius, then it comes out that the effective radius of the unfolded state depends linearly on the
crowder volume fraction. The linear dependence of the unfolded chains osmotic pressure on the
balloon radius, however, is a property of the unfolded state and may result from both entropic and
enthalpic contributions in the unfolded protein. Our simulation result about the linear dependence
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of the unfolded state radius of gyration on crowder volume fraction obtained for two different
proteins suggests that this property is not quite accidental.
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Fig. 4. Same as Fig. 3 but for protein SpA (PDB code: 2SPZ) and only with the spher-
ical confinement of Rwall = 100 Å. The folding free energy changes shown in (a) are
obtained by simulations at temperature T = 0.8ε/kB, which is slightly below the folding
temperature of this protein.

IV. CONCLUSIONS

Macromolecular crowding and confinement are cellular conditions that increase the stabil-
ity of protein, which is true for both the thermal stability of the native state, associated with the
folding temperature, and the folding stability, i.e. the thermodynamic stability of the folded state
with respect to the unfolded state. This stability increase is due to the excluded volume effects
of crowding and confinement. We have shown that in conditions when both the crowding and
confinement are present, these effects are additive to each other giving rises to the folding temper-
ature and the folding free energy of protein approximately in accumulative way. Our simulations
show that under crowded and confined conditions, the folding temperature increases linearly with
the crowder volume fraction and the height of the specific heat decreases linearly with the latter.



360 P. T. BUI AND T. X. HOANG

Also under these conditions, the dependence of folding free energy change on crowder volume
fraction can be fitted by Minton scaled particle theory by assuming that the effective size of the
unfolded state depends linearly on the crowder volume fraction. Our results about the obtained
linear dependences can be useful in the case when one would like to extrapolate experimental or
simulation data to predict the folding temperature or the free energy change for a wide range of
crowder volume fraction.
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