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Abstract. We argue that dark matter can automatically arise from a gauge theory that possesses
a non-minimal left-right gauge symmetry, SU(3)C ⊗ SU(M)L⊗ SU(N)R⊗U(1)X , for (M,N) =
(2,3), (3,2), (3,3), · · · , and (5,5).
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I. INTRODUCTION

The astrophysical and cosmological observations have implied that our universe is made of
roundly 26% dark matter [1]. If its present-day existence is a result of thermal relics of the early
universe, it may be formed of weakly-interacting massive particles (WIMPs), which do not present
in the standard model [2]. What is the nature of WIMPs? In this work, we show that the left-right
models which generalize the electroweak symmetry to non-minimal left-right gauge groups can
automatically provide the WIMPs from their gauge principles.
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II. PROPOSAL OF THE MODEL

Consider the model based on the gauge group,

SU(3)C⊗SU(M)L⊗SU(N)R⊗U(1)X , (1)

which explicitly violates a symmetry between the left and right for M 6= N. If M = N as well as the
left-right symmetry is imposed, it must be spontaneously broken, along with the gauge symmetry
breaking, in order to recover the standard model and the new physics besides. In other words,
it all marks a theory that induces the observed left-right asymmetries. Further, our following
discussions apply for all cases for (M,N) = (2,3), (3,2), (3,3), and so forth, as well as for if the
left-right symmetry is imposed or not, called non-minimal left-right gauge extensions.

Denote the Cartan generators for SU(M)L and SU(N)R as HiL (i = 0,1,2, ...,M− 2) and
H jR ( j = 0,1,2, ...,N − 2), respectively. Further, we work in the basis of the generalized Gell-
Mann matrices, i.e. H0L,R = T3L,R, H1L,R = T8L,R, and so forth (note that Hk = T(k+2)2−1). The
electric charge operator is generally embedded as

Q = H0L +H0R +
1
2
(B−L), (2)

where

1
2
(B−L)≡

Max{M−2,N−2}

∑
k=1

βk(HkL +HkR)+X . (3)

Here, note that either HkL = 0 for k > M−2 or HkR = 0 for k > N−2.
The fermion content which is anomaly free is arranged as

ψaL =


νaL
eaL
Eq1

aL
...

EqM−2
aL

∼
(

1,M,1,
qL−1

M

)
,

ψaR =


νaR
eaR
Eq1

aR
...

EqN−2
aR

∼
(

1,1,N,
qR−1

N

)
, (4)
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Q3L =


u3L
d3L

Jq1+2/3
3L

...
JqM−2+2/3

3L

∼
(

3,M,1,
qL−1

M
+

2
3

)
,

Q3R =


u3R
d3R

Jq1+2/3
3R

...
JqN−2+2/3

3R

∼
(

3,1,N,
qR−1

N
+

2
3

)
, (5)

QαL =


dαL
−uαL

J−q1−1/3
αL

...
J−qM−2−1/3

αL

∼
(

3,M∗,1,
1−qL

M
− 1

3

)
,

QαR =


dαR
−uαR

J−q1−1/3
αR

...
J−qN−2−1/3

αR

∼
(

3,1,N∗,
1−qR

N
− 1

3

)
. (6)

The generation indices are a = 1,2,3 and α = 1,2. The electric charge parameters satisfy qL =
q1 +q2 + · · ·+qM−2 and qR = q1 +q2 + · · ·+qN−2. If M = N, qL = qR and the fermion spectrum
as given is completed, because each chiral fermion (left/right) has a corresponding counterpart
(right/left) and all the anomalies are cancelled. If M 6= N, qL 6= qR and a number of chiral fermion
partners have not been listed (which must be included to cancel the U(1)X anomalies), which
transform trivially under the left-right gauge groups (as concretely introduced in the following
cases). The coefficients, βk, can be determined through the parameters, qk, as

βk =

√
k

k+2
βk−1 +

√
2(k+1)

k+2
(qk−1−qk), (7)

where the initial conditions are β0 = 1 and q0 =−1. We particularly provide β1 =−(1+2q1)/
√

3,
β2 =−(1−q1 +3q2)/

√
6, and β3 =−(1−q1−q2 +4q3)/

√
10, which will appropriately be used

for the realistic versions as shown below.
Suppose that the nontrivial fermion representations under the left-right gauge groups are

only defining representations or the complex conjugates of defining representations, respectively,
and that they are enlarged from those of the standard model. The SU(M)L (or SU(N)R) anomaly
cancelation requires the number of fermion M-plets (or N-plets) to be equal to that of fermion
anti-M-plets (or anti-N-plets), since a representation and its conjugate have opposite anomalies.
Hence, the number of fermion generations must be a multiple of 3—fundamental color number.



24 LEFT-RIGHT MODEL FOR DARK MATTER

The QCD asymptotic freedom demands that the number of fermion generations is smaller than or
equal to 33/(2×Max{M,N}) = 5,4,3 for Max{M,N} = 3,4,5. Thus, the generation number is
just three, as observed, and M,N ≤ 5. That property for the standard model and the minimal left-
right model disappears since the SU(2) anomaly always vanishes for every fermion representation.
Therefore, this approach provides a partial solution of the fermion flavor questions.

The gauge symmetry breaking and mass generation are done by several scalar multiplets.
The first one is

φ =


φ 0

11 φ
+
12 φ

−q1
13 · · · φ

−qN−2
1,N

φ
−
21 φ 0

22 φ
−1−q1
23 · · · φ

−1−qN−2
2,N

φ
q1
31 φ

1+q1
32 φ 0

33 · · · φ
q1−qN−2
3,N

...
...

...
. . .

...
φ

qM−2
M,1 φ

1+qM−2
M,2 φ

qM−2−q1
M,3 · · · φ

qM−2−qN−2
M,N

∼
(

1,M,N∗,
qL−1

M
− qR−1

N

)
, (8)

which couples to ψ̄aLψbR, Q̄3LQ3R, and Q̄αLQβR. The second one is

∆R =



∆0
11

1√
2
∆
−
12

1√
2
∆

q1
13 · · · 1√

2
∆

qN−2
1,N

1√
2
∆
−
12 ∆

−−
22

1√
2
∆
−1+q1
23 · · · 1√

2
∆
−1+qN−2
2,N

1√
2
∆

q1
13

1√
2
∆

q1−1
23 ∆

2q1
33 · · · 1√

2
∆

q1+qN−2
3,N

...
...

...
. . .

...
1√
2
∆

qN−2
1,N

1√
2
∆

qN−2−1
2,N

1√
2
∆

qN−2+q1
3,N · · · ∆

2qN−2
N,N


R

∼
(

1,1,
N(N +1)

2
,
2(qR−1)

N

)
, (9)

which couples to ψ̄c
aRψbR. The multiplets, φ and ∆R, are minimally required if M = N.

If M > N, the third one includes M−N scalar multiplets, χp (p = 1,2, ...,M−N), where

χp =



χ
−qN+p−2
1

χ
−1−qN+p−2
2

χ
q1−qN+p−2
3

...
χ0

N+p
...

χ
qM−2−qN+p−2
M


∼
(

1,M,1,
qL−1

M
−qN−2+p

)
, (10)

which couples to ψ̄aLEqN+p−2
bR , Q̄3LJqN+p−2+2/3

3R , and Q̄αLJ−qN+p−2−1/3
βR . Here, the second factors are

the singlet fermion partners as mentioned.
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Otherwise, if N > M, the third one includes N−M scalar multiplets instead, also denoted
by

χp =



χ
−qM+p−2
1

χ
−1−qM+p−2
2

χ
q1−qM+p−2
3

...
χ0

M+p
...

χ
qN−2−qM+p−2
N


∼

(
1,1,N,

qR−1
N
−qM+p−2

)
, (11)

which couples to Ē−qM+p−2
aL ψbR, J̄−qM+p−2−2/3

3L Q3R, and J̄qM+p−2+1/3
αL QβR, where the first factors are

the singlet fermion partners as mentioned, and in this case p = 1,2,3, ...,N−M.
We see that (φ ,χ) for M > N or (φ ,χ†) for M < N always form a squared matrix of

Max{M,N} dimension, in which every diagonal element is electrically neutral as the M = N case
is. Additionally, there might be two extra scalar multiplets (i) ∆L that couples to ψ̄c

aLψbL, defined
similarly to ∆R by replacing (R,N)→ (L,M) and (ii) η that couples Q3L to QαR as well as Q3R to
QαL,

η =


η
+
11 η0

12 η
1+q1
13 · · · η

1+qN−2
1,N

η0
21 η

−1
22 η

q1
23 · · · η

qN−2
2,N

η
q1+1
31 η

q1
32 η

2q1+1
33 · · · η

q1+qN−2+1
3,N

...
...

...
. . .

...
η

qM−2+1
M,1 η

qM−2
M,2 η

qM−2+q1+1
M,3 · · · η

qM−2+qN−2+1
M,N


∼

(
1,M,N,

qL−1
M

+
qR−1

N
+1
)
. (12)

Exceptionally, if either M = 2 or N = 2, we do not necessarily introduce η because φ can play its
role instead. Note that φ ,χp,η provides Dirac masses for fermions, while ∆L,R provide Majorana
masses for neutrinos. It is also shown that the gauge bosons can gain appropriate masses. The
gauge symmetry of the model, SU(3)C⊗SU(M)L⊗SU(N)R⊗U(1)X , is broken down to SU(3)C⊗
U(1)Q⊗P, where P is a discrete gauge symmetry.

Indeed, note that φ ,χp,η break the gauge symmetry down to SU(3)C⊗U(1)Q⊗U(1)B−L,
which leave B− L conserved. This B− L charge is only broken by ∆L,R. A transformation of
U(1)B−L takes the form, U(ω) = eiω(B−L). P is those U(ω)’s that conserve the vacuum,

〈∆L,R〉=
1√
2

(
vL,R · · ·

...
. . .

)
. (13)

Since [B− L](∆11) = −2, we get e−2iω = 1, which yields ω = mπ for m = 0,±1,±2, · · · , and
thus P = eimπ(B−L) = (−1)m(B−L). Considering m = 3 as well as multiplying the result by the spin
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parity, (−1)2s, we obtain a conserved operator, P = (−1)3(B−L)+2s, the so-called W-parity (since
the wrong B−L particles shown hereafter transform nontrivially under it).

From the electric charge operator, the B−L charges of the new fields that have T3L,R = 0
equal two times their electric charges, respectively, which is a new observation of this work.
It is valid for every new fermion (E,J) as well as numerous scalar and gauge boson fields.
The B− L charge and W-parity for all the fields are listed in Table 1. Here, we have denoted
P±k = (−1)±(6qk+1), which is nontrivial for qk 6= (2m−1)/6, with m = 0,±1,±2, · · · The particles
that have nontrivial W-parity are named as W-particles since they possess wrong B− L charges
aforementioned, unlike the standard model particles. The particles that have P = 1, which include
the standard model particles and others, are called as normal particles. Thus, the normal particles
also include those that have a B−L charge differing from the usual one (defined by the standard
model) by even unit, such as ∆11,12,22. It is noteworthy that if the electric charge parameters get
values like ordinary electric charges, i.e. qk = m/3 = 0,±1/3,±2/3,±1, · · · , we have P±k = −1.
In this case, W-parity behaves as R-parity, and the W-particles are just W-odd.

The lightest W-particle (LWP) is stabilized due to W-parity conservation and kinematically
suppressed. Further, there is no single W-field appearing in interactions since W-parity is con-
served. If an interaction has rk of P+

k fields and sl of P−l fields for some values of k and l, where rk
and sl are integer. The W-parity conservation implies ∑k rk(6qk+1)−∑l sl(6ql +1)= 2m for some
m integer. This equation is valid for any qk,l parameter, which follows k = l and rk = sl . Thus, P+

k
and P−k always appear in pairs in such interactions. If there are interactions that include only rkl of
P+

k P+
l fields and sk′l′ of P−k′ P

−
l′ fields, it deduces ∑k,l rkl(6qk + 6ql)−∑k′,l′ sk′l′(6qk′ + 6ql′) = 2m,

which is satisfied if k = k′, l = l′, and rkl = sk′l′ . P+P+ and P−P− always appear in pairs in such
interactions. If an interaction contains only tkl of P+

k P−l fields, we have ∑kl tkl(6qk− 6ql) = 2m,
which implies tkl = tlk. Thus, P+P− and its conjugate always appear in pairs in those interac-
tions. We also see that the W-fields that have W-parity as P+P−, P+P+, or P−P− often enter the
self-interactions of three W-particles, where the last two have W-parity of P+ and/or P−.

If the LWP is electrically neutral, it may be a dark matter candidate. The models that
provide dark matter candidates are listed in Table 2. We see that in the qk = 0 model, dark matter
may be a neutral fermion, a neutral non-Hermitian gauge boson, or some neutral scalar. However,
in the qk = −1 model, dark matter include only a neutral non-Hermitian gauge boson or some
neutral scalar. Whilst, the qk = 1 model yields dark matter particle uniquely as a neutral scalar.

III. REALISTIC REALIZATIONS

They include the models that correspond to (M,N) = (2,3), (3,2), (3,3),· · · , or (5,5) in
order to contain W-particles as well as satisfying QCD asymptotic freedom. The one-parameter
models (q1) coupled to (M,N) = (2,3), (3,2), and (3,3) were firstly introduced in [3] to solve the
diphoton anomaly, which was an old story. Additionally, the implication for dark matter was firstly
recognized in a particular setup for M = 2 and N = 3 [4]. The two-parameter models (q1,q2) are
associated with (M,N) = (2,4), (3,4), (4,2), (4,3), (4,4). We have seven models for the three
parameters (q1,q2,q3), where M or N equals 5.

Our proposal can naturally provide the small neutrino masses via seesaw mechanisms. It
also supplies the tree-level flavor-changing neutral currents due to the non-universal couplings of
the new neutral gauge bosons and scalars with ordinary quarks, which potentially explain the B
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Table 1. B−L and W-parity for the model fields, where k, l appropriately run from 1 to
M−2 or N−2. The χ fields have been provided for M > N, while for N > M those can
be achieved by interchanging M↔ N. We have also denoted B as U(1)X gauge boson,
WL (WR) and AL (AR) as non-Hermitian and neutral SU(M)L (SU(N)R) gauge bosons,
respectively. In the table, almost the L,R notations for the relevant fields were omitted for
brevity.

Field B−L P Field B−L P

νa −1 1 ∆
qk+ql
2+k,2+l 2(qk +ql) P+

k P+
l

ea −1 1 χ
−qN+p−2
1 −1−2qN+p−2 P−N+p−2

Eqk
a 2qk P+

k χ
−1−qN+p−2
2 −1−2qN+p−2 P−N+p−2

ua 1/3 1 χ
qk−qN+p−2
k+2 2(qk−qN+p−2) P+

k P−N+p−2

da 1/3 1 η
+
11 0 1

Jqk+2/3
3 2(qk +2/3) P+

k η0
12 0 1

J−qk−1/3
α −2(qk +1/3) P−k η0

21 0 1

φ 0
11 0 1 η

−
22 0 1

φ
+
12 0 1 η

1+ql
1,l+2 1+2ql P+

l

φ
−
21 0 1 η

ql
2,l+2 1+2ql P+

l

φ 0
22 0 1 η

1+qk
k+2,1 1+2qk P+

k

φ
−ql
1,2+l −1−2ql P−l η

qk
k+2,2 1+2qk P+

k

φ
−1−ql
2,2+l −1−2ql P−l η

qk+ql+1
k+2,l+2 2(qk +ql +1) P+

k P+
l

φ
qk
2+k,1 1+2qk P+

k gluon 0 1

φ
1+qk
2+k,2 1+2qk P+

k B 0 1

φ
qk−ql
2+k,2+l 2(qk−ql) P+

k P−l AiL 0 1

∆0
11 −2 1 A jR 0 1

∆
−
12 −2 1 W±12 0 1

∆
−−
22 −2 1 W−ql

1,l+2 −1−2ql P−l

∆
ql
1,2+l −1+2ql P+

l W−1−ql
2,l+2 −1−2ql P−l

∆
−1+ql
2,2+l −1+2ql P+

l W qk−ql
k+2,l+2 2(qk−ql) P+

k P−l

physics anomalies (see [4] and references therein). A further analysis yields that the normal parti-
cles have Q and B−L as quantized as usual values, while those charges of W-particles arbitrarily
depend on the qk parameters (see [5] for a similar treatment).
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Table 2. The dark matter models and corresponding candidates obtained when qk gets
appropriate values for some k values, respectively. The χ candidates are viable when
either p = k+2−N for M > N or p = k+2−M for N > M.

Model Candidates
qk = 0 (Ea)k+2, W1,k+2, φ1,k+2, φk+2,1, ∆1,k+2, η2,k+2, ηk+2,2, possibly χ1
qk =−1 W2,2+k, φ2,k+2, φk+2,2, η1,k+2, ηk+2,1, possibly χ2
qk = 1 ∆2,k+2

IV. CONCLUSION

It has been shown that there is a bulk of wrong B−L particles, which have B−L related
to the corresponding electric charge (most yield that B−L equals two times the electric charge),
responsible for dark matter. The candidate is the LWP which may include a neutral fermion, scalar,
or vector, and is stabilized by W-parity.
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