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Abstract. We study how the trapping time of an electron in a circular graphene quantum dot
depends on the electron’s angular momentum and on the parameters of the external Gaussian
potential used to induce the dot. The trapping times are calculated through a numerical determi-
nation of the quasi-bound states of electron from the two-dimensional Dirac-Weyl equation. It is
shown that on increasing the angular momentum, not only the trapping time decreases but also the
trend of how the trapping time depends on the effective radius of the dot changes. In particular,
as the dot radius increases, the trapping time increases for m < 3 but decreases for m > 3. The
trapping time however always decreases upon increasing the potential height. It is also found
that the wave functions corresponding to the states of larger trapping times or higher m are more
localized in space.
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I. INTRODUCTION

Graphene is a two-dimensional conducting material made up from a single layer of carbon
atoms with unique electronic properties [1]. Due to the special sublattice symmetry of graphene,
electrons in graphene under low energy excitations can be considered as quasi-relativistic mass-
less chiral fermions, which are formally described by the Dirac-Weyl equation. Anomalous Hall
effect [2], absence of backscattering and Klein paradox [3] are examples of the most intriguing
properties possessed by the quasi-relativistic electrons in graphene. In the Klein paradox, an elec-
tron approaching a potential barrier with a zero transverse momentum will tunnel through the
barrier with a transmission probability equal to unity independent of the barrier height. Due to
the Klein tunneling, it is impossible to localize electrons in a small region of graphene as in a
conventional quantum dot. Fortunately, electrons can still be trapped in such a region for some
finite time that is hopefully long enough to execute an electronic operation by applications [4].

Experimentally, there are several methods of creating graphene quantum dots. The electron
beam lithography is one of them, in which a preferred structure is cut from a graphene flake [5].
However, producing a graphene quantum dot with nano-size precise termination is an arduous
task. It is well known that the electronic properties of graphene nanostructures strongly depend
on the geometry of the graphene edges, such as zigzag or armchair [6]. For applications, it is de-
sirable to have the dots whose electronic properties are not sensitive to the edges of the structures.
Therefore, other methods of fabricating quantum dots by electrically confining charge carriers in
a small region of a graphene sheet have been developed. Zhao et al. [7] created nano-sized elec-
tron cavities in graphene, which are circular p-n junctions by implementing the scanned electron
tunneling (STM) probe. This method uses a planar back gate, which tunes the carrier density of
the whole graphene sheet, and the STM tip, considered as a top gate, that tunes the carrier density
just below the tip. As the consequence of this tuning, confined electronic states are obtained. In
the study of Lee et al. [8], the graphene quantum dots were fabricated using a technique involving
local manipulation of defect charge within the insulating substrate beneath a graphene monolayer.
In the experiment by Gutierrez et al. [9], nearly circular graphene quantum dots were induced by
an engineered copper substrate that leads to different potential energies inside and outside the dot.
Since the graphene sheet that contains an electrically induced graphene quantum dot has a much
larger size than the dot, the electronic properties of the dot are considerably not affected by the
edges of the graphene sheet.

The finite trapping time of electron in an electrically induced graphene quantum dot is often
obtained through the description of the electron’s quasi-bound states of complex energies [4]. For
a quasi-bound state of energy E, the characteristic trapping time is given by τ = h̄/| ImE|, where
ImE is the imaginary part of E. The real and imaginary parts of E also correspond to the position
and the width, respectively, of a resonance peak in the electron density of states [10]. There have
been theoretical studies of graphene quantum dots of various potential shapes. Hewageegana and
Apalkov [11] shows that in a circular graphene quantum dot with a sharp rectangular potential,
among the quasi-bound states, strongly localized states can exist due to interference effect. In
particular, electrons having an energy equal to the height of the confinement potential are fully
localized, i.e. with infinite trapping time, if the potential height corresponds to a root of a Bessel
function. The study of Chen et al. [12] suggests that the trapping time of electron in graphene
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quantum dots increases with the smoothness of the confinement potential given by a power func-
tion and the electron’s angular momentum. The quantum dots induced by trapezoidal potential
have been studied in Ref. [13] showing that the trapping time increases when the slope of chang-
ing part of the potential decreases. Note that differently fabricated quantum dots may correspond
to different potential shapes. It has been shown [8] that the experimental charge density map for
a graphene quantum dot has a smoothly changing profile at the p-n junction boundary, suggesting
that it is induced by a smooth potential. Other fabricated graphene quantum dots are claimed to
have sharp boundaries of the boundary size ∼1 nm [9]. Thus, the shape of the confinement poten-
tial can be monitored by the method of fabrication, even though experimentally it is not possible
to determine the exact form of a potential.

In the present work, we adopt a Gaussian potential to study the trapping of electrons in
electrically induced graphene quantum dots. It has been suggested that the Gaussian shape poten-
tial better reflects the potential profile in graphene bipolar junctions than other types of potential
due to its smoothness [14, 15]. This gives us a motivation to apply this potential to the quantum
dots. We will find the solutions of the Dirac-Weyl equation numerically by using the Runge-Kutta
method and by scanning a complex energy plane. The effects of dot radius and potential heights
as well as that of angular momentum on the trapping time, the wave function and the density of
states of electron will be investigated.

II. METHODS

Model of graphene quantum dot
We consider a model of graphene quantum dot induced by a Gaussian shape confinement

potential
U(r) =U0 exp(−r2/d2) , (1)

where U0 is the potential height, r is the radial distance from the center of the dot and d is the
effective dot radius. The Hamiltonian of a single electron in graphene with such a potential has a
Dirac-Weyl form and is given by

Ĥ = vF~σ · p̂+U(r) , (2)
where vF ≈ 106 m s−1 is the Fermi velocity, ~σ =(σx,σy) are spin Pauli matrices and p̂=−i(∂x,∂y)
is a 2D momentum operator. In polar coordinates with r and φ as the radial distance and azimuthal
angle, respectively, the Hamiltonian can be written as

Ĥ =

(
U(r) −ih̄vFe−iφ

(
∂r− i

r ∂φ

)
−ih̄vFeiφ

(
∂r +

i
r ∂φ

)
U(r)

)
. (3)

The wave function ψ of electron satisfies the Dirac-Weyl equation

Ĥψ = Eψ , (4)

with E the electron’s energy. Due to the cylindrical symmetry of the potential, we consider the
solutions of (4) in the following form:

ψ(r,φ) =
(

ei(m−1)φ χA(r)
eimφ χB(r)

)
, (5)

where the angular momentum number m has integer values; χA(r) and χB(r) are the radial parts
of the spinor components of the wave function corresponding to the projections of the latter on the
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graphene sublattices A and B, respectively. The energy E is assumed to have complex values, to
allow for the non-stationary (quasi-bound) solutions.

Putting (5) into (4) we get two coupled differential equations:

∂ χB(r)
∂ r

+
(m

r

)
χB(r) = i

(
E−U(r)

h̄vF

)
χA(r) , (6)

∂ χA(r)
∂ r

−
(

m−1
r

)
χA(r) = i

(
E−U(r)

h̄vF

)
χB(r) . (7)

For r large enough (r� d) to consider that U(r) = 0, it can be shown that the solutions of
(6) and (7) representing outgoing waves are

χ
?
A(r) = α H(1)

m−1

(
Er
h̄vF

)
, (8)

χ
?
B(r) = iα H(1)

m

(
Er
h̄vF

)
, (9)

where H(1)
m (x) is the Hankel function of the first kind of the order m and α is a normalizing

constant.
In calculations, energy will be given in meV whereas length will be given in units of a with

a = 0.246 nm being the graphene lattice constant.

Runge-Kutta method
In order to obtain the solutions for a full range of r, we use the 4th order Runge-Kutta

method [16] to numerically integrate the coupled equations (6) and (7). To illustrate the method,
consider a system of 2 ordinary coupled differential equations:

x′1 = f1(t,x1,x2) , (10)
x′2 = f2(t,x1,x2) , (11)

where x1 = x1(t), x2 = x2(t) and the left hand sides are their first derivatives with respect to t. Let

X =

[
x1
x2

]
and F(t,X) =

[
f1
f2

]
. (12)

The 4th order Runge-Kutta method is given by [16]

X(t +h) = X(t)+
1
6
(K1 +2K2 +2K3 +K4) , (13)

where h is an integration step and

K1 = hF(t,X) , (14)

K2 = hF
(

t +
h
2
,X+

K1

2

)
, (15)

K3 = hF
(

t +
h
2
,X+

K2

2

)
, (16)

K4 = hF(t +h,X+K3). (17)
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For our quantum dot problem, we have considered the wave functions in the range of
r ∈ [rmin,rmax], where rmin is a small value near zero and rmax is a large value much larger than the
dot radius. For a given value of E, the wave function at r = rmax is calculated from equations (8)
and (9). The solution for the full range of r is obtained by performing a backward Runge-Kutta
integration, i.e. shooting from rmax to rmin with a negative integration step

h =
rmin− rmax

N
< 0 , (18)

where N is the number of integration steps. We look for solutions which do not diverge near r = 0.
This is done by considering the following score function

q(E) = log
(
|χA(rmin)|2 + |χB(rmin)|2

)
(19)

in the complex energy plane of ReE and ImE. The solutions corresponding to the quasi-bound
states are such that q is a local minimum in this plane. In our calculations, we choose rmax = 10d,
rmin varying from 0.01d to 0.05d, and the number of integration steps N is chosen such that
h≈−a. Typically, as m increases we need also to increase rmin in order to avoid divergence at the
small r due to numerical errors.

III. RESULTS AND DISCUSSION

Fig. 1 shows the complex energy spectrum of the quasi-bound states of electron in graphene
quantum dot for various angular momentum numbers m of electron and effective radii d of the dot.
The potential height in these cases is fixed to be U0 = 200 meV. For each values of m and d, there
is a certain number of energy values found in the complex energy plane shown as (ReE) versus
(− ImE). Note that here ImE < 0 is due to the fact that we have a potential barrier (U0 > 0)
instead of a potential well. This means that the localized particles are holes instead of electrons,
but since in graphene these two types of particles are fully equivalent at low energy excitations we
will refer the localized particles as electrons only. The spectra show that for given m and d, the
smallest values of (− ImE) are observed for the states of the lowest and the highest (ReE). One
can see that as m increases the range of (− ImE), in which the energy values are found, decreases
rapidly. In particular, for m increases from 2 to 8, the (− ImE) range decreases almost 300 times.
This result is in agreement with the result reported in Ref. [12] for a quantum dot with different
confinement potential, and confirms that the trapping time increases quickly with m.

Here, we find that the trend of how the trapping time depends on the dot radius also depends
on m. For m = 2, it is shown that (− ImE) decreases as the dot radius d increases from 200a to
400a (Fig. 1A), indicating an increase of trapping time on increasing the dot radius. On the other
hand, for m > 3 an inverse trend is observed, i.e. (− ImE) decreases when d decreases (Figs.
1C and 1D). The number of states however also decreases quickly with d. The case of m = 3
corresponds to the crossover of the trend as for this case the values of (− ImE) for different dot
radii are quite close. Thus, electrons are better confined when m increases but also for m > 3 the
trapping time decreases with the dot radius. Note that technically it is more difficult to fabricate
dots of small size.
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Fig. 1. Real vs. imaginary part of the energies of the quasi-bound states for U0 = 200
meV and varying dot radius d and azimuthal quantum number m. The panels show the
data for d = 200a (crosses), 300a (circles) and 400a (squares) for m = 2 (A), m = 3 (B),
m = 4 (C) and m = 8 (D) as indicated.

We now fix the dot radius to be d = 400a and study the dependence of trapping time on
the potential height U0. Fig. 2 shows that on changing U0 from 200 meV to 150 meV and then to
100 meV, (− ImE) decreases (the trapping time increases) but also the number of energy values
decreases. This tendency is consistent for all values of m considered. Thus, on lowering the
potential barrier one can localize better but with less electrons.
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Fig. 2. Real vs imaginary part of the energies of the quasi-bound states for quantum dot
of d = 400a and varying U0 and m. The panels show the data for U0 = 200 meV (squares),
150 meV (circles) and 100 meV (crosses) for m = 3 (A), m = 5 (B), m = 7 (C) and m = 9
(D) as indicated.

Fig. 3 shows the radial parts of the two-component spinor wave functions obtained for
several quasi-bound states of different m. It is shown that as m increases the amplitude of the wave
function inside the dot increases while the amplitude outside the dot decreases, which means that
electron is better localized in space at higher angular momentum. Note that the higher m states are
also associated with longer trapping times. Thus, there is some correlation between the trapping
time and the localization in space of the trapped electrons.
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Fig. 3. Examples of the radial wave function for m= 2 (A), m= 5 (B) and m= 8 (C) with
d = 400a and U0 = 200 meV. For the case in A: ImE =−1.3706 meV, ReE = 31.6851
meV. For the case in B: ImE = −0.1331 meV, ReE = 25.4893 meV. For the case in C:
ImE =−0.00189 meV, ReE = 18.2140 meV.

In Fig. 4, we show the density of states for the quantum dots of d = 400a with U0 = 200
meV and U0 = 300 meV and for m = 2 and m = 6. The density of state for a given quantum dot
and for a given m is calculated as [11]

g(E) =
1
π

K

∑
n=1

− ImEn

|E−En|2
, (20)
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where E is a real energy variable, En is the complex energy of a quasi-bound state with an index
n and K is the total number of the quasi-bound states obtained in the calculation. It is shown
that the resonance peaks are quite broad for m = 2 and much narrower for m = 6. This finding is
consistent with the decrease of (− ImE) values on increasing m. Fig. 4 also shows that there are
more resonance peaks for the dots of larger U0. In fact, the position and the width of the resonance
peaks should correspond to the values of (ReE) and (− ImE).
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Fig. 4. Density of states for quantum dots with d = 400a. The panels shown are for
U0 = 200 meV and m = 2 (A), U0 = 300 meV and m = 2 (B), U0 = 200 meV and m = 6
(C), and U0 = 300 meV and m = 6 (D).

IV. CONCLUSION

In this paper, we have studied the trapping times of electron in graphene quantum dots
induced by a Gaussian potential. We have shown that the trapping time increases with the angular
momentum number m of electron. We have also shown that there are opposite trends of how
the trapping time changes with the dot radius for low and high m values, while the trapping time
always decreases on increasing the potential height for all m. The calculated wave functions of the
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quasi-bound states show that an electron poorer localized in time, i.e. having longer trapping time,
is better localized in space. Our results also indicate that there is a tradeoff between the capabilities
of a graphene quantum dot to trap more electrons in the dot and to trap them more efficiently in
time. In other words, larger and induced by stronger potential quantum dots can accommodate
more electrons but also trap them in shorter times.
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