Study on Optical Properties and Energy Transfer of Dy3+ Ions in ZnS Semiconductor Nanocrystals
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23365Abstract
In this study, Dy³⁺-doped ZnS nanocrystals (NCs) with concentrations varying from 0.5-3% were successfully synthesized by the wet chemical method in a pure Ar atmosphere. XRD and EDX results showed that the material crystallized in a stable cubic phase, with nanometer size, and determined the presence of elements in the sample. FTIR spectra recorded characteristic vibrational bands of Zn–S bonds and surface organic functional groups, confirming the formation of ZnS host and a stable organic coating surrounding the nanoparticles. UV-Vis absorption spectra confirmed the distinct quantum confinement effect compared to bulk ZnS. Photoluminescence (PL) spectra of the sample showed characteristic emission lines of Dy³⁺, in which the gold peak at ~580 nm was dominant. The CIE color coordinate and correlated color temperature (CCT) analysis results showed the ability to tune the color from cool blue light of pure ZnS to warm white light when doped with Dy³⁺. The fluorescence quenching that occurred at Dy concentrations above 2% and the decrease in fluorescence lifetime with increasing Dy concentrations were explained through cross-relaxation energy transfer processes in Dy³⁺ ions. These characteristics demonstrate that ZnS:Dy³⁺ NCs are promising luminescent materials for white light LEDs and advanced optoelectronic applications.
Downloads
References
[1] N. X. Ca, N. D. Vinh, S. Bharti, P. M. Tan, N. T. Hien, V. X. Hoa et al.,
Optical properties of ce3+ and tb3+ co-doped zns quantum dots,
J. Alloys Compd. 883 (2021) 160764.
[2] S. S. Khan, J. P. Steffy, L. Sruthi, A. Syed, A. M. Elgorban, I. Abid et al.,
Construction of zns qds decorated gc3n4 nanosheets...,
[3] D. B. Bora, S. Das, A. Phukan, S. Kalita, P. P. Handique and R. Borah,
Brønsted-lewis acidic ionic liquid-derived zns quantum dots...,
[4] R. Pradheepa, I. Manimehan and P. Sakthivel,
Structural, bandgap tailoring... sm3+-doped zns quantum dots,
Mater. Sci. Eng. B 306 (2024) 117463.
[5] M. Haque, I. Konthoujam, S. Lyndem, S. Koley, K. Aguan and A. S. Roy,
Formation of zns quantum dots using green tea extract...,
J. Mater. Chem. B 11 (2023) 1998.
[6] S. Murugan, M. Ashokkumar, P. Sakthivel and D. Choi,
Sulfur deficiency mediated visible emission of zns qds...,
[7] N. T. Hien, Y. Y. Yu, K. C. Park, N. X. Ca, T. T. K. Chi, B. T. T. Hien et al.,
Influence of eu doping on the structural and optical properties of zn1-xeuxse qds,
J. Phys. Chem. Solids 148 (2021) 109729.
[8] P. M. Tan, T. Ngoc, V. D. Nguyen, N. T. Hien, V. X. Hoa, N. X. Truong et al.,
Study of optical properties and energy transfer mechanism...,
Opt. Mater. 114 (2021) 110901.
[9] N. D. Vinh, P. M. Tan, P. V. Do, S. Bharti, V. X. Hoa, N. T. Hien et al.,
Effect of dopant concentration... sm3+-doped cds qds,
[10] A. Kumawat, S. Chattopadhyay, R. K. Verma and K. P. Misra,
Eu doped zno nanoparticles with strong potential...,
Mater. Lett. 308 (2022) 131221.
[11] D. D. Hile, H. C. Swart, S. V. Motloung, T. E. Motaung, R. E. Kroon, K. O. Egbo et al.,
Synthesis and characterization of europium doped znse thin films...,
Mater. Chem. Phys. 262 (2021) 124303.
[12] S. Jindal and P. Sharma,
Optical and magnetic properties of dy3+ doped cds nanoparticles,
Mater. Sci. Semicond. Process. 108 (2020) 104884.
[13] S. Ahmad,
First-principles relativistic analysis of dy-doped cdse...,
[14] S. Sa, A. Phuruangrat, T. Thongtem and S. Thongtem,
Characterization and photocatalysis of visible-light-driven dy-doped zno...,
Inorg. Chem. Commun. 117 (2020) 107944.
[15] G. El Fidha, N. Bitri, F. Chaabouni, S. Acosta, F. Güell, C. Bittencourt et al.,
Physical and photocatalytic properties of sprayed dy doped zno thin films...,
[16] N. Sharma and P. P. Sahay,
Solution combustion synthesis of dy-doped zno nanoparticles...,
[17] J. Carranza, L. A. González and J. Escorcia-García,
Luminescence enhancement of mn2+-doped zns nanoparticles...,
[18] X. Tian, J. Wen, S. Wang, J. Hu, J. Li and H. Peng,
Starch-assisted synthesis and optical properties of zns nanoparticles,
Mater. Res. Bull. 77 (2016) 279.
[19] H. K. Sharma, P. K. Shukla and S. L. Agrawal,
Effect of sulphur concentration on zns nanoparticles,
J. Mater. Sci.: Mater. Electron. 28 (2017) 6226.
[20] S. Gouraha, K. B. Masood, S. J. Gilani, A. Rai, H. S. Tewari and J. Singh,
Enhanced photoluminescence... dy-doped sodium zinc molybdate,
[21] R. Mohan, C. Rakkappan, N. Punitha, K. Jayamoorthy, P. Magesan and N. Srinivasan,
Capping-induced changes in zn0.96ni0.04s nanoparticles,
Chem. Phys. Impact 7 (2023) 100260.
[22] P. V. Do, L. D. Thanh, T. T. C. Thuy, N. V. Nghia, N. M. Hung, N. T. M. Thuy et al.,
Structure, optical properties and energy transfer of eu3+-doped cdse,
[23] N. T. Hien, N. T. Kien, V. H. Yen, T. Ngoc, P. V. Do, V. X. Phuc et al.,
Optical properties and judd-ofelt analysis of dy3+ doped coal2o4,
[24] M. Salavati-Niasari, M. Ranjbar and D. Ghanbari,
A rapid microwave route for zns nanoparticles,
J. Nanostruct. 1 (2012) 231.
[25] M. Jothibas, S. J. Jeyakumar, C. Manoharan, I. K. Punithavathy, P. Praveen and J. P. Richard,
Structural and optical properties of zns nanoparticles,
J. Mater. Sci.: Mater. Electron. 28 (2017) 1889.
[26] S. Muthukumaran and M. A. Kumar,
Structural, ftir and pl properties of zns:cu thin films,
[27] R. Gärd, Z. X. Sun and W. Forsling,
Ft-ir and ft-raman studies of colloidal zns,
J. Colloid Interface Sci. 169 (1995) 393.
[28] U. Anitha, R. Usha, A. Jithin, A. Christy and S. Varughese,
Thermal effect on band gap and pl in zno:er,
Mater. Today Proc. 3 (2016) 145.
[29] A. M. Ghaleb and A. Q. Ahmed,
Structural, electronic, and optical properties of sphalerite zns,
Chalcogenide Lett. 19 (2022) 309.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.
Funding data
-
National Foundation for Science and Technology Development
Grant numbers 103.02-2021.48


