Forthcoming

Application of the \(R\)-matrix method to determine the \((p,\gamma)\) cross-section

Author affiliations

Authors

  • Nguyen Hoang Phuc \(^1\)Department of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Dien Hong Ward, Ho Chi Minh City, Vietnam;
    \(^2\)Vietnam National University Ho Chi Minh City, Linh Xuan Ward, Ho Chi Minh City, Vietnam
    https://orcid.org/0009-0008-3766-7788

DOI:

https://doi.org/10.15625/0868-3166/22929

Keywords:

($p,\gamma$) reaction, calculable $R$-matrix, local potential, nonlocal potential

Abstract

We apply the calculable \(R\)-matrix method to determine the \(p,\Gamma\) cross section. We compare our cross-section calculation for the benchmark \(^{12}\)C\((p,\gamma)^{13}\)N reaction with results from the widely used FRESCO and RADCAP codes, which use the conventional Numerov method. Our calculations are in good agreement with these codes. Furthermore, we extend the calculable \(R\)-matrix method to accommodate non-local potentials.

Downloads

Download data is not yet available.

References

[1] C. R. Brune1 and B. Davids, Radiative capture reactions in astrophysics, Annu. Rev. Nucl. Part. Sci. 65 (2015) 87.

[2] C. E. Rolfs and W. S. Rodney, Cauldrons In the Cosmos: Nuclear Astrophysics. Chicago Press, Chicago, 1988.

[3] C. Bertulani and T. Kajino, Frontiers in nuclear astrophysics, Prog. Part. Nucl. Phys. 89 (2016) 56.

[4] P. Descouvemont, Nuclear reactions of astrophysical interest, Front. Astron. Space Sci. 7 (2020) 9.

[5] P. Descouvemont and D. Baye, The (r)-matrix theory, Rep. Prog. Phys. 73 (2010) 036301.

[6] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer et al., Azure: An (r)-matrix code for nuclear astrophysics, Phys. Rev. C 81 (2010) 045805.

[7] J. Huang, C. Bertulani and V. Guimarães, Radiative capture of nucleons at astrophysical energies with single-particle states, At. Data Nucl. Data Tables 96 (2010) 824.

[8] Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta and H. Utsunomiya, Nacre ii: an update of the nacre compilation of charged-particle-induced thermonuclear reaction rates for nuclei with mass number A<16, Nucl. Phys. A 918 (2013) 61.

[9] I. J. Thompson, Coupled reaction channels calculations in nuclear physics, Comput. Phys. Rep. 7 (1988) 167.

[10] C. Bertulani, Radcap: A potential model tool for direct capture reactions, Comput. Phys. Commun. 156 (2003) 123.

[11] T. Simos, A numerov-type method for the numerical solution of the radial Schrödinger equation, Appl. Numer. Math. 7 (1991) 201.

[12] P. Descouvemont, An (r)-matrix package for coupled-channel problems in nuclear physics, Comput. Phys. Commun. 200 (2016) 199.

[13] D. Baye, The Lagrange-mesh method, Phys. Rep. 565 (2015) 1.

[14] N. H. e. a. Phuc, Study of nonlocality effects in direct capture reactions with Lagrange-mesh (R)-matrix method, Int. J. Mod. Phys. E 30 (2021) 2150079.

[15] P. Fraser, K. Amos, S. Karataglidis, L. Canton, G. Pisent and J. P. Svenne, Two causes of nonlocalities in nucleon-nucleus potentials and their effects in nucleon-nucleus scattering, Eur. Phys. J. A 35 (2008) 69.

[16] Y. Tian, D. Y. Pang and Z.-y. Ma, Effects of nonlocality of nuclear potentials on direct capture reactions, Phys. Rev. C 97 (2018) 064615.

[17] N. L. Anh, N. H. Phuc, D. T. Khoa, L. H. Chien and N. T. T. Phuc, Folding model approach to the elastic $p+^{12,13}mathrm{C}$ scattering at low energies and radiative capture $^{12,13}mathrm{C}(p,gamma)$ reactions, Nucl. Phys. A 1006 (2021) 122078.

[18] F. Perey and B. Buck, A non-local potential model for the scattering of neutrons by nuclei, Nucl. Phys. 32 (1962) 353.

[19] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, vol. 55. US Government Printing Office, 1972.

[20] B. Robson, The Bloch $mathcal{L}$-operator, Nucl. Phys. A 132 (1969) 5.

[21] H. A. Bethe, Energy production in stars, Phys. Rev. 55 (1939) 434.

[22] N. Burtebaev, S. B. Igamov, R. J. Peterson, R. Yarmukhamedov and D. M. Zazulin, New measurements of the astrophysical (S) factor for (^{12}mathrm{C}(p,gamma)^{13}mathrm{N}) reaction at low energies and the asymptotic normalization coefficient (nuclear vertex constant) for the (p+^{12}mathrm{C}to^{13}mathrm{N}) reaction, Phys. Rev. C 78 (2008) 035802.

[23] J. L. Vogl, Radiative capture of protons by (^{12}mathrm{C}) and (^{13}mathrm{C}) below 700 keV. PhD thesis, California Institute of Technology, 1963.

[24] C. Rolfs and R. E. Azuma, Interference effects in (^{12}mathrm{C}(p, gamma)^{13}mathrm{N}) and direct capture to unbound states, Nucl. Phys. A 227 (1974) 291.

Published

17-10-2025

How to Cite

[1]H. P. Nguyen, “Application of the \(R\)-matrix method to determine the \((p,\gamma)\) cross-section”, Comm. Phys., vol. 35, no. 4, Oct. 2025.

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.