Numerical study of thermal lensing and focal shift in 1064~nm fiber laser cutting heads 1-6 kW

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/22744

Keywords:

thermal lensing, fiber laser, finite element method, focus shift

Abstract

Thermal lensing is an unavoidable phenomenon in optical systems utilizing high-power lasers, including laser cutting heads, due to energy absorption-induced thermal and optical variations. This study analyzes its effects on a 1064 nm laser system (1–6 kW) using two fused silica plano-convex lenses, with focusing lens focal lengths of 125–300 mm. Simulations indicate a peak lens temperature of 952 K at 6 kW, driving focal shifts up to Δf = −45.4 mm (300 mm focal length) and relative refractive index changes of 74.5–114%. Spot diagram analysis at the focal plane indicates severe beam spreading and optical distortion when the laser power exceeds 4 kW. Proposed solutions include thermally stable materials, enhanced anti-reflective coatings, and real-time focal adjustments to optimize cutting precision.

Downloads

Download data is not yet available.

References

[1] K. Kim, M.-K. Song, S.-J. Lee, D. Shin, J. Suh and J.-D. Kim, Fundamental study on underwater cutting of 50 mm-thick stainless steel plates using a fiber laser for nuclear decommissioning, Appl. Sci. 12 (2022) 495.

[2] J. S. Shin, S. Y. Oh, H. Park, T.-S. Kim, L. Lee, C.-M. Chung et al., Underwater cutting of 50 and 60 mm thick stainless steel plates using a 6-kW fiber laser for dismantling nuclear facilities, Opt. Laser Technol. 115 (2019) 1.

[3] A. Sharma and V. Yadava, Experimental analysis of Nd-YAG laser cutting of sheet materials -- a review, Opt. Laser Technol. 98 (2018) 264.

[4] J. S. Shin, K.-H. Song, S. Y. Oh and S.-K. Park, Laser cutting studies on 10--60 mm thick stainless steels with a short focus head for nuclear decommissioning, Opt. Laser Technol. 169 (2024) 110121.

[5] A. Sen, B. Doloi and B. Bhattacharyya, Fiber laser micro-machining of engineering materials, in Non-traditional Micromachining Processes, G. Kibria, B. Bhattacharyya and J. Davim (eds.), Springer (2017).

[6] K. Zhang, S. Xiao, W. Liu, L. Chen and H. Wang, Feasibility study of an adjustable-power laser cutting head for TBM applications: focus on rock fragmentation efficiency and energy consumption, Tunnelling Underground Space Technol. 155 (2025) 106155.

[7] J. S. Shin, S. Y. Oh, H. Park, H. Kim and J. Lee, High-speed fiber laser cutting of thick stainless steel for dismantling tasks, Opt. Laser Technol. 94 (2017) 244.

[8] C. Jacinto, D. N. Messias, A. A. Andrade and P. R. R. Costa, Thermal lens and z-scan measurements: thermal and optical properties of laser glasses -- a review, J. Non-Cryst. Solids 352 (2006) 3582.

[9] A. Gatej and P. Loosen, Methods for compensation of thermal lensing based on thermo-optical (TOP) analysis, in Proceedings of SPIE, vol. 9131, pp. 109–116 (2014), DOI.

[10] L. Tatzel and F. P. León, Impact of the thermally induced focus shift on the quality of a laser cutting edge, J. Laser Appl. 32 (2020) 022013.

[11] W. M. Steen and J. Mazumder, Laser Material Processing, Springer (2010).

[12] K. Dobek, Thermal lensing: outside of the lasing medium, Appl. Phys. B 128 (2022) 18.

[13] X. Z. Liu, L. N. Liu, J. B. Zhou and H. Q. Zhang, Simulated and experimental study on temperature induced lens focal shifts, Optoelectron. Lett. 15 (2019) 245.

[14] X. Z. Liu, L. N. Liu, J. B. Zhou and H. Q. Zhang, Study on passive compensation of temperature induced thermal lenses, Optoelectron. Lett. 16 (2020) 161.

[15] N. Harrop, S. Wolf, O. Maerten and P. R. Salter, Absorption driven focus shift, in Proceedings of SPIE, vol. 9741, pp. 181–192 (2016), DOI.

[16] S. Faas, D. J. Foerster, R. Weber and J. Baumert, Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W, Opt. Express 26 (2018) 26020.

[17] Raytools, Technical specifications for tube cutting applications, Website (2025).

[18] IPG Photonics Corporation, Cutting heads brochure, Website (2019).

[19] Osprilaser, Laser cutting head overview, Website (2025).

[20] T. Gischkat, D. Schachtler, I. Stevanovic, S. Michael and F. Scholz, Substrate cleaning processes and their influence on the laser resistance of anti-reflective coatings, Appl. Sci. 10 (2020) 8496.

[21] L. Wan, J. Yang, X. Liu and Y. Zhou, Enhanced antireflective and laser damage resistance of refractive-index gradient SiO2 nanostructured films at 1064 nm, Pol. J. Chem. Technol. 26 (2024) 0014.

[22] M. H. Maleki, S. Abbasi, M. Vaezzade and H. R. Sadeghi, Improving anti-reflectivity and laser damage threshold of SiO2/ZrO2 thin films by laser shock peening at 1064 nm, Opt. Quantum Electron. 46 (2014) 1149.

[23] D. B. Leviton and B. J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica, in Proceedings of SPIE, vol. 6273, p. 62732K (2006), DOI.

[24] C. Z. Tan and J. Arndt, The refractive index of silica glass and its dependence on pressure, temperature, and the wavelength of the incident light, in Silicon-Based Material and Devices, pp. 51–91, Academic Press (2001), DOI.

[25] A. Kruusing, Underwater and water-assisted laser processing: Part 2—etching, cutting and rarely used methods, Opt. Lasers Eng. 41 (2004) 329.

[26] R. K. Jain, D. K. Agrawal, S. C. Vishwakarma and P. K. Mishra, Development of underwater laser cutting technique for steel and zircaloy for nuclear applications, Pramana J. Phys. 75 (2010) 1253.

Downloads

Published

09-12-2025

How to Cite

[1]D. Thanh Tung, “Numerical study of thermal lensing and focal shift in 1064~nm fiber laser cutting heads 1-6 kW”, Comm. Phys., vol. 35, no. 4, p. 403, Dec. 2025.

Issue

Section

Papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.