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Abstract. One of our works, [C. T. Bich and N. B. An, Pramana – Journal of Physics 96 (2022)
33], proposed a linear optics scheme for controlled teleportation of two different types of qubits.
This was achieved by using a four-partite hybrid entangled state enabling the control to be taken
by two controllers operating in two distinct types of Hilbert spaces: a finite-dimensional space and
an infinite-dimensional space. In this work, the power of the two controllers is assessed through
the analysis of the average fidelity of the teleportation protocol in their absence. It is worth noting
that the power of the controller holding a discrete-variable state is equal to or greater than that of
the controller holding a continuous-variable state.
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1. Introduction

Quantum entanglement [1] lies at the heart of quantum physics and lays the groundwork
for future quantum technologies. It serves as a crucial element in potential advancements in quan-
tum information theory, such as quantum dense coding [2], quantum cryptography [3], quantum
information splitting [4], and other related protocols. Among these genuine applications, quan-
tum teleportation (QT) [5], which was initially proposed by Bennett et al., stands out as one of
the most groundbreaking achievements. In its original version, QT enables the secure and precise
transmission of a quantum state from a sender, called Alice, to a spatially distant receiver, named
Bob, without the direct physical transfer of the state. This transmission can be achieved through
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local operations and classical communication, based on a previously shared entangled state. Af-
ter its initial emergence, QT not only has garnered substantial theoretical attention [6–9] but has
also yielded significant experimental results [10–12] by using various types of quantum resources,
such as Einstein-Podolsky-Rosen (EPR) pair states [13], Greenberger-Horne-Zeilinger (GHZ) trio
states [14], W states [15], cluster states [16] and so on. In 1998, as a new extension of the QT
protocol, the first scheme for controlled teleportation was proposed [17]. In this protocol, a super-
visor oversees the teleportation process, ensuring that an arbitrary qubit state can be transferred
between two remote locations only with the supervisor’s active participation, utilizing a GHZ trio
state. Following the development of this GHZ-based approach, various controlled teleportation
protocols have been proposed [18–22].

All of the entangled states mentioned above are encoded in the discrete-variable (DV)
state [23, 24] with a single DV degree of freedom. In 1998, Furusawa et al. realized QT with
continuous-variable (CV) state [25]. From that, many of the QT schemes for CV state have been
investigated [26–28]. For more than a decade, a lot of scientists have turned to a different type of
entanglement which is called hybrid entangled state [29]. It combines the advantages as well as
overcomes the intrinsic disadvantages of a DV state and a CV state. Hybrid entangled states have
proven to be crucial for various important applications, such as enabling heterogeneous system im-
plementations [30–33], generating non-Gaussian states [34], and facilitating teleportation [35–38].
For example, [38] investigated quantum teleportation involving a single-rail qubit and a coherent-
state qubit, utilizing hybrid entanglement between these two types of qubits. In [39], we presented
a protocol for controlled teleportation that also involves a DV state and a CV state. This protocol
utilizes a four-partite hybrid entangled state and is supervised by two controllers operating in dis-
tinct Hilbert spaces. Namely, Alice and Charlie work exclusively with DV qubits, while Bob and
David handle CV qumodes. The aim is to enable teleportation between a CV qubit and a DV state
in a noise-affected environment, with both David and Charlie jointly monitoring the process.

In this work, we examine the power of two controllers, Charlie and David, in the quantum
teleportation processes of [39] by virtue of evaluating how genuine the states that the receiver
obtained when the controllers, for some reason, do not cooperate. To verify such genuine property,
the conventional average fidelities and their formulas are utilized. After calculations and analyses,
the results show that the role of the controller who works in finite-dimensional space is always
larger than or equal to that of the other controller who works in infinite-dimensional space for
both processes of teleportation from a CV state to a DV state and vice versa.

This paper is organized as follows. Section 2 introduces controlled hybrid teleportation
using four-party hybrid entangled states, following the framework in [39]. Section 3 investigates
the control power of Charlie and David in hybrid teleportation from a DV state to a CV state,
while Section 4 addresses their control power in the reverse process, from a CV state to a DV
state. Finally, Section 5 provides some discussions and concludes the paper.

2. Controlled hybrid teleportation between DV and CV states

In our previous work [39], we introduced two quantum teleportation procedures as outlined
in the following. In the first process, Alice has a DV state given by

|ψ1⟩A′ = (x |0⟩+ y |1⟩)A′ , (1)
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where |0⟩ and |1⟩ represent the vacuum and single-photon states, respectively. The coefficients x
and y are unknown and must satisfy the normalization condition |x|2 + |y|2 = 1. The objective is
to transfer this quantum information from Alice’s DV qubit to Bob, such that Bob obtains a CV
state of the form

|ψ2⟩B′ = N
(
x|α⟩+ y|−α⟩

)
B′ , (2)

where |±α⟩ represent coherent states with complex amplitudes ±α . The normalization factor is
N =

[
1+ 2Re(x∗y)e−2|α|2]−1/2, ensuring that |ψ2⟩ is properly normalized. The second process,

which is the inverse of the first, involves Bob who has an unknown coherent-state qubit in the state
given by (2) and needs to transmit the coefficients x and y to Alice, who then should receive them
as part of a single-rail qubit state (1). Both teleportation procedures are performed simultaneously
under supervision by two controllers, David and Charlie, who operate within the CV and DV
spaces, respectively.

To facilitate these tasks, it is necessary for the sender, receiver and controllers to share a
hybrid four-partite quantum resource in advance. This resource is expressed as

|Q⟩BDCA =
1√
2
(|α,α,0,0⟩+ |−α,−α,1,1⟩)BDCA, (3)

where qumodes B and D are held by Bob and David, while qubits C and A by Charlie and Alice,
respectively. As these modes are distributed, interactions with the environment can lead to photon
dissipation, potentially affecting purity of the quantum channel which becomes a mixed state

ρBDCA(τ) =
1
2

[
|ατ⟩B⟨ατ|⊗ |ατ⟩D⟨ατ|⊗ |0⟩C⟨0|⊗ |0⟩A⟨0|

+λτ
2|ατ⟩B⟨−ατ|⊗ |ατ⟩D⟨−ατ|⊗ |0⟩C⟨1|⊗ |0⟩A⟨1|

+λτ
2|−ατ⟩B⟨ατ|⊗ |−ατ⟩D⟨ατ|⊗ |1⟩C⟨0|⊗ |1⟩A⟨0|

+|−ατ⟩B⟨−ατ|⊗ |−ατ⟩D⟨−ατ|
⊗((1− τ

2) |0⟩C ⟨0|+ τ
2 |1⟩C ⟨1|)

⊗((1− τ
2) |0⟩A ⟨0|)+ τ

2 |1⟩A ⟨1|
]
, (4)

where λ = e4α2(τ2−1) and τ = e−γt/2. Here, γ is the decay constant determined by the strength of
the interaction between the quantum channel and its environment, τ denotes the interaction time
with the optical environment, and ρBDCA(t) represents the density matrix of the quantum channel at
time t. Since the initially pure quantum channel state ρBDCA(0) = |Q⟩BDCA⟨Q| loses its coherence
over time and becomes the mixed state ρBDCA(τ) as described in Eq. (4), the amplitudes ±α of the
initial coherent states in Eq. (2) are diminished to ±ατ when the process begins. Consequently,
we will develop the protocol for the two tasks considering that the state in Eq. (2) evolves to

|ψ2(τ)⟩B′ = N ′(x |ατ⟩+ y |−ατ⟩)B′ , (5)

where N′ =
[
1+ 2Re(x∗y)e−2|α|2τ2]−1/2. Note that, photon loss in single-rail qubits transforms

the state |1⟩⟨1| into |0⟩⟨0| while keeping it within the qubit space {|0⟩, |1⟩}. Such an error is
equivalent to a bit-flip and can be corrected using a quantum error-correction code.
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Fig. 1. Diagram of the quantum teleportation process from a DV state to a CV state. (a)
Consider the role of the CV controller, David, when he does not participate in the quantum
teleportation process. (b) Consider the role of Charlie when she does not participate in
the quantum teleportation process. In the diagram, BS is a linear optical device consisting
of a balanced beam-splitter sandwiched between two −π/2-phase-shifters, acting on two
modes as BSi j = Pj(−π/2)BSi j(π/4)Pj(−π/2). H is the Hadamard operator and U is an
operator that can be X , Z or XZ. DA′ , DA, DC and DD are photodetectors.

3. Control power in hybrid teleportation from a DV state to a CV state

In this section, we evaluate the control power of David and Charlie in the teleportation
process where the quantum information initially encoded in Alice’s DV qubit is transferred to
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Bob, yielding the CV state specified in Eq. (5). In order to do that, we will calculate how much
information the receiver Bob can obtain from the sender Alice without the collaboration of the
controllers. First, we will examine the power of David, who holds the qumode D in the CV space.
To achieve that, we will perform the tasks sequentially as shown in Fig. 1a. The details are as
follows. In the first step, Alice employs the optical device BSAA′ to mix modes A′ and A, then
measures the photon numbers k and l of these modes using two photodetectors DA′ and DA. Since
each mode, A′ and A, can hold at most one photon and the beam-splitter is balanced, there are only
five possible combinations for (k, l)= {(0,0), (0,1), (1,0), (0,2), (2,0)}. In the second step, as the
DV controller, Charlie first applies a Hadamard gate to her mode C. She then measures the photon
number m in mode C using a photodetector DC and publicly discloses this measurement to Bob for
further use. Notably, m can only be 0 or 1, as mode C is a DV state defined by the number states |0⟩
and |1⟩. Here, BS denotes an optical device that consists of a balanced beam-splitter sandwiched
between two −π/2-phase-shifters, acting on two modes as BSi j = Pj(−π/2)BSi j(π/4)Pj(−π/2).
The state of two modes B and D of Bob and David, respectively, after the actions of Alice and
Charlie will be

ρBD(τ) =
C⟨m|HρBDC(τ)H+|m⟩C

Tr{|m⟩C⟨m|[HρBDC(τ)H+]}
, (6)

where

ρBDC(τ) =
A′A⟨k, l|BSA′A[ρA′ρBDCA(τ)]BS+

A′A|k, l⟩A′A

Pk,l
, (7)

with
Pk,l = Tr

{
|k, l⟩A′A⟨k, l|[BSA′A[ρA′ρBDCA(τ)]BS+

A′A]
}
. (8)

Here, we analyze the situation in which Alice and Bob attempt to perform teleportation process
without David’s authorization. In this scenario, David declines from measuring his qubit. Conse-
quently, the density matrix for mode B, resulting from tracing out mode D, will be expressed as
ρB

klm(τ), depending on the values of k, l and m. The four possible combinations for k, l and m are
given as follows:
If klm = 010,101 we have

ρ
B
010(τ) = ρ

B
101(τ) = M1(τ){|y|2|ατ⟩B⟨ατ|

+λτ
2e−2α2τ2

(x∗y|ατ⟩1⟨−ατ|+ xy∗|−ατ⟩B⟨ατ|)
+[|y|2(1− τ

2)+ |x|2τ
2]|−ατ⟩1⟨−ατ|}= ρ

B
1 (τ), (9)

where
M1(τ) = [|y|2(2− τ

2)+ |x|2τ
2 +λτ

2(x∗y+ y∗x)e−4α2τ2
]−1. (10)

If klm = 100,011 we have

ρ
B
100(τ) = ρ

B
011(τ) = M2(τ){|y|2|ατ⟩B⟨ατ|

−λτ
2e−2α2τ2

(x∗y|ατ⟩1⟨−ατ|+ xy∗|−ατ⟩B⟨ατ|)
+[|y|2(1− τ

2)+ |x|2τ
2]|−ατ⟩1⟨−ατ|}= ρ

B
2 (τ), (11)

where
M2(τ) = [|y|2(2− τ

2)+ |x|2τ
2 −λτ

2(x∗y+ y∗x)e−4α2τ2
]−1. (12)
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Fig. 2. (Color online) The average control power in the teleportation process from a
single-rail qubit to a coherent-state qubit is analyzed as a function of the scaled dimen-
sionless τ for different values of α: (a) α = 0.5, (b) α = 1, (c) α = 2 and (d) α = 5.
The blue dotted curve depicts Charlie’s control power CPC, who operates within the DV
space, while the red dashed curve shows David’s control power CPD, who works in the
CV space. The purple horizontal line at 1/3 represents the highest classical value that can
be achieved.

If klm = 000,001 we have

ρ
B
000(τ) = ρ

B
001(τ) =

|ατ⟩B⟨ατ|+(1− τ2)|−ατ⟩B⟨−ατ|
2− τ2 (13)

If klm = 020,021,200,201 we have

ρ
B
020(τ) = ρ

B
021(τ) = ρ

B
200(τ) = ρ

B
201(τ) = |−ατ⟩B⟨−ατ|. (14)

Looking at Eqs. (9), (11), (13) and (14), we see that only when klm = 010,101,100,011, Bob
have a chance to receive the desired state (see the details in [39]) by applying the operators X or
XZ to Eqs. (9) and (11), respectively. Note that, X maps |± τα⟩ to |∓ τα⟩ and XZ maps |± τα⟩
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to ±|± τα⟩. So the fidelity between the output state and the target state in the absence of David’s
collaboration determined by

FD = B′⟨ψ2(τ)|ρB
1 (τ)|ψ2(τ)⟩B′

= (N ′2M1){|y(y+ xe−2τ2α2
)|2 +((1− τ

2)|y|2 + τ
2|x|2)|(ye−2τ2α2

+ x)|2

+ 2λτ
2e−2α2τ2

Re[xy∗(xe−2τ2α2
+ y)(y∗+ y∗e−2τ2α2

)]}. (15)

To calculate the average fidelity across all input states, which are assumed to occur with equal
frequency, we redefine the parameters in polar coordinates as x = cosθ and y = eiϕ sinθ . The
average fidelity can then be computed by [40]

F(θ ,ϕ) =
1

2π

∫ 2π

0
dϕ

∫
π/2

0
F(θ ,ϕ)sin(2θ)dθ . (16)

The power of controller David is determined by CPD = 1−FD, so the average control power is
CPD = 1−FD. We have performed numerical calculations for several values of α , and plot the
result, which is red curve in Fig. 2.

Next we examine the power of Charlie, who is a DV controller. To achieve that, we will
perform the tasks sequentially as shown in Fig. 1b. Firstly, Alice uses BSAA′ to mix modes A′ and
A, then counts the photon numbers of these modes k and l by two photodetectors DA′ and DA).
Secondly, David employs a photodetector DD to measure the photon count in mode D. The result,
denoted as n, is also announced publicly for Bob’s subsequent use. Since mode D represents a
coherent state, n can take on any non-negative integer value and is categorized into even or odd,
i.e., n = {even, odd}. After the actions of Alice and David, the state of modes B and C will be

ρBC(τ) =
D⟨n|ρBDC(τ)|n⟩D

Tr{|n⟩D⟨n|ρBDC(τ)}
, (17)

where ρBDC(τ) is determined in Eq. (7). The density matrix describing mode B, obtained by
tracing over mode C, will only depend on k, l as ρ ′B

kl (τ). There are three possible cases for the
values of k, l as follows:
If kl = 01,10 we have

ρ
′B
01(τ) = ρ

′B
10(τ) = M′

1(τ){|y|2|ατ⟩B⟨ατ|
+[|y|2(1− τ

2)+ |x|2τ
2]|−ατ⟩1⟨−ατ|}= ρ

′B
1 (τ), (18)

where
M′

1(τ) = [|y|2(2− τ
2)+ |x|2τ

2]−1. (19)

If kl = 00,11 we have

ρ
′B
00(τ) = ρ

′B
11(τ) =

|ατ⟩B⟨ατ|+(1− τ2)|−ατ⟩B⟨−ατ|
2− τ2 . (20)

If kl = 02,20 we have
ρ
′B
02(τ) = ρ

′B
20(τ) = |−ατ⟩B⟨−ατ|. (21)

Looking at Eqs. (18), (20), (21) we see that only when kl = 01,10 Bob have a chance to receive the
desired state by applying the operators X or XZ to Eqs. (18) and (20), respectively. The fidelity
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between the output state and the target state without the collaboration of the second controller
Charlie who holds qubit in mode C can be determined.

FC = B′⟨ψ2(τ)|ρ ′B
1 (τ)|ψ2(τ)⟩B′ = (N′2M′

1){|y(y+ xe−2τ2α2
)|2

+ ((1− τ
2)|y|2 + τ

2|x|2)|(ye−2τ2α2
+ x)|2}. (22)

The average power of the second controller, Charlie, denoted as CPC = 1−FC, was numerically
evaluated for various values of α and plotted as a function of the noise parameter τ in Fig. 2,
where Charlie’s role is represented by the blue curve. A detailed analysis of these results will be
presented in the discussion section (Section 5).

4. Control power in hybrid teleportation from a CV state to a DV state

In this subsection, we aim to consider the power of David and Charlie in the teleportation
process, where the quantum information initially encoded in Bob’s CV qubit is transferred to
Alice, yielding the DV state specified in Eq. (1). First, we also will examine the power of David,
who holds the qubit D in the CV space. The steps of this process are illustrated in detail in Fig.
3a. Initially, Bob starts the procedure by combining modes B′ and B using a BSB′B. He then finds
the photon numbers in the resulting modes using photodetectors DB′ and DB, recording the counts
as p and q, respectively. Meanwhile, as the DV controller, Charlie first applies a Hadamard gate
to her mode C. She then measures the photon number m in mode C with a photodetector labeled
DC. Charlie publicly reveals this information for Alice to use later. After Bob and Charlie have
performed their respective actions, the state of modes D and A will be

ρDA(τ) =
C⟨m|HρDCA(τ)H+|m⟩C

Tr{|m⟩C⟨m|[HρDCA(τ)H+]}
, (23)

where

ρDCA(τ) =
B′B⟨p,q|BSB′B[ρB′(τ)ρBDCA(τ)]BS+

B′B|p,q⟩B′B

Pp,q
, (24)

with
Pp,q = Tr

{
|p,q⟩B′B⟨p,q|[BSB′B[ρB′(τ)ρBDCA(τ)]BS+

B′B]
}
. (25)

Let’s now consider the scenario where Alice and Bob aim to carry out teleportation without
David’s permission. In such a case, David absents from measuring his qubit. In that case, the
density matrix describing mode A depending on p,q and m obtained by tracing over mode D, will
be:
If (m = 0,q = 0, p= even ̸= 0) or (m = 1,q = 0, p= odd), then

ρ
A
1 (τ) = L1(τ){(|x|2 + |y|2(1− τ

2))|0⟩A⟨0|
+λτ

2e−2α2τ2
(xy∗|0⟩A⟨1|+ yx∗|1⟩A⟨0|)

+|y|2τ
2|1⟩A⟨1|}, (26)

where
L1(τ) = [1+(x∗y+ y∗x)λτ

2e−2α2τ2
]−1. (27)
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Fig. 3. (Color online) Diagram of the quantum teleportation process from a CV state to
a DV state. (a) Consider the role of the controller, David, when he does not participate
in the quantum teleportation process. (b) Consider the role of Charlie when she does not
participate in the quantum teleportation process. In the diagram, V is an operator that can
be X , Z or XZ.

If (m = 0,q = 0, p= odd) or (m = 1,q = 0, p= even ̸= 0), then

ρ
A
2 (τ) = L2(τ){(|x|2 + |x|2(1− τ

2))|0⟩A⟨0|
−λτ

2e−2α2τ2
(xy∗|0⟩A⟨1|+ yx∗|1⟩A⟨0|)

+|y|2τ
2|1⟩A⟨1|}, (28)
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Fig. 4. (Color online) The average control power of the teleportation process from a
coherent-state qubit to a single-rail qubit is plotted as a function of the scaled dimen-
sionless parameter τ , with different values of α: (a) α = 0.5, (b) α = 1, (c) α = 2, and
(d) α = 5. The blue dotted curve indicates Charlie’s control power CP′

C, who operates
within the DV space, while the red dashed curve shows David’s control power CP′D, who
functions in the CV space. The purple horizontal line at 1/3 represents the maximum
classical value that can be achieved.

where

L2(τ) = [1− (x∗y+ y∗x)λτ
2e−2α2τ2

]−1. (29)

If (m = 0, p = 0, q= even ̸= 0) or (m = 1, p = 0, q= odd ̸= 0), then

ρ
A
3 (τ) = L1(τ){(|y|2 + |x|2(1− τ

2))|0⟩A⟨0|
+λτ

2e−2α2τ2
(yx∗|0⟩A⟨1|+ xy∗|1⟩4⟨0|)

+|x|2τ
2|1⟩A⟨1|}. (30)
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If (m = 0, p = 0, q= odd) or (m = 1, p = 0, q= even ̸= 0), then

ρ
A
4 (τ) = L2(τ){(|y|2 + |x|2(1− τ

2))|0⟩A⟨0|
−λτ

2e−2α2τ2
(yx∗|0⟩A⟨1|+ xy∗|1⟩A⟨0|)

+|x|2τ
2|1⟩A⟨1|}. (31)

If (m = 0, p = 0, q= 0) or (m = 1, p = 0, q= 0), then

ρ
A
5 (τ) = L2(τ)[(2− τ

2))|0⟩A⟨0|+λτ
2e−2α2τ2

(x∗y+ y∗x)(|0⟩A⟨1|
+|1⟩A⟨0|)+ τ

2|1⟩A⟨1|], (32)

where
L3(τ) = [2+2(x∗y+ y∗x)λτ

2e−2α2τ2
]−1. (33)

Examining Eqs. (26), (28), (30), (31) and (32), we observe that the state ρA
5 (τ) from Eq. (32) does

not approach the desired DV state as indicated in Eq. (1). In contrast, the states ρA
2 (τ), ρA

3 (τ) and
ρA

4 (τ) are capable of transitioning to ρA
1 (τ), which closely resembles the target state in Eq. (1) by

applying the operators Z, X and XZ on qubit A correspondingly. Here, for single-rail qubits, the
X operator maps | j⟩ to | j⊕1⟩, while the Z operator multiplies | j⟩ by a phase factor (−1) j, where
j ∈ {0,1} and ⊕ denotes addition modulo 2. Therefore, we will calculate the fidelity between the
output state represented by ρA

2 (τ) and the target state given in Eq. (1) in the absence of David’s
collaboration by

F ′
D = A′⟨ψ1|ρA

1 (τ)|ψ1⟩A′

= L1(τ)(|x|4 + τ
2|y|4 +(1− τ

2 +2λe−2α2τ2
τ

2)|x|2|y|2). (34)

The expression for F ′
D in Eq. (34) is relatively simple, and the averaging integration process is

straightforward, resulting in

FD =
1
2
+

1
6

τ
2(1+2λe−2α2τ2

). (35)

The power of controller David is determined by CP′
D = 1−F ′

D, so the average control power is
CP′

D = 1−F ′
D. We have the average power for the first controller David

CP′
D =

1
2
− (2λe−2α2τ2

+1)τ2

6
. (36)

Now, lets examine the power of Charlie, who is a CV controller, which is illustrated in detail in
Fig. 3b. Similar to the above calculations, the density matrix describing mode A, while tracing
over mode C will be

ρ
′A(τ) = δ0pρ

′A
1 (τ)+δ0qρ

′A
2 (τ)+δ0pδ0qρ

′A
3 (τ), (37)

where

ρ
′A
1 (τ) = {(|x|2 + |y|2(1− τ

2))|0⟩A⟨0|
+|y|2τ

2|1⟩A⟨1|}, l ̸= 0 (38)

ρ
′A
2 (τ) = {(|x|2 + |y|2(1− τ

2))|0⟩A⟨0|
+|x|2τ

2|1⟩A⟨1|}, k ̸= 0 (39)
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and

ρ
′A
3 (τ) =

1
2
[(2− τ

2))|0⟩A⟨0|+ τ
2|1⟩A⟨1|]. (40)

Analyzing Eqs. (38), (39) and (40), it is evident that the state ρ ′A
3 (τ) in Eq. (40) does not approx-

imate the desired DV state as specified in Eq. (1). In contrast, the states ρ ′A
2 (τ) can evolve into

ρ ′A
1 (τ), which is close to the target state in Eq. (1). Therefore, we will assess the fidelity between

the state with density matrix ρ ′A
1 (τ) and the desired state in Eq. (1) in the scenario where Charlie’s

participation is absent by

F ′
C = A′⟨ψ1|ρ ′A

1 (τ)|ψ1⟩A′

= |x|4 + τ
2|y|4 +(1− τ

2)|x|2|y|2. (41)

The equation for F ′
C given in Eq. (41) is simple, and the averaging integration process is straight-

forward, yielding

F ′
C =

1
2
+

1
6

τ
2. (42)

We have the average power for the second controller Charlie will be determined as

CP′
C =

1
2
− τ2

6
. (43)

The roles of David, CP′
D = 1−F ′

D, and Charlie, CP′
C = 1−F ′

C, in the CV-to-DV tele-
portation process are depicted in Fig. 4, where David’s role is represented by the red curve and
Charlie’s role by the blue curve.

5. Discussion and Conclusion

In this section, we analyze the roles of David and Charlie in two types of hybrid teleporta-
tion processes: from a DV state to a CV state and from a CV state to a DV state. For the DV-to-CV
process (Fig. 2), the results indicate that Charlie’s control power (blue curve) is consistently higher
than David’s (red curve) when α is small. As α increases, their powers converge and eventually
coincide for large values of α . Moreover, the overall control power grows with increasing α . In
the small-α regime, both Charlie’s and David’s powers remain below the classical threshold of
1/3, which is required to ensure that the teleportation fidelity without the controller’s authoriza-
tion does not surpass that of a purely classical channel. The highest control power is achieved in
the regime of large α combined with small values of the noise parameter τ . For the CV-to-DV
process (Fig. 4), the behavior of Charlie’s control power is distinctly different. His power remains
essentially unaffected by variations in α , demonstrating the robustness of his role with respect to
this parameter. By contrast, David’s control power strongly depends on α: when α is small, his
power is significantly weaker than Charlie’s. As α increases, David’s control power gradually
improves, and eventually, for sufficiently large α , the powers of both controllers converge. This
contrasting behavior underscores Charlie’s superior and more stable influence, particularly in the
regime of small α .

In conclusion, we have investigated the control powers of two controllers in quantum con-
trolled teleportation protocols involving hybrid systems, specifically between a single-rail qubit
and a coherent-state qubit. By evaluating the average teleportation fidelities in the absence of each
controller’s participation, we quantified their respective roles in both teleportation directions. Our
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analysis reveals that, in the single-rail to coherent-state direction, both controllers’ powers depend
on the coherent-state amplitude parameter α . In contrast, in the coherent-state to single-rail direc-
tion, a clear asymmetry emerges: David’s control power varies with α , whereas Charlie’s power
remains independent of it. A general trend can thus be identified: the controller holding the DV
quantum state consistently achieves a control power equal to or greater than that of the controller
holding the CV quantum state. This asymmetry can be traced to the additional operations re-
quired during the decoding process. Specifically, Charlie, who holds the DV state, must perform
a Hadamard gate, while David, who holds the CV state, is not required to do so. This operational
difference suggests that the complexity or number of quantum operations assigned to a controller
directly contributes to their influence over the teleportation process. In other words, the controller
tasked with performing more demanding quantum operations tends to exert stronger control.
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