DÀI TOÀN ĐỐI XƯƠNG TRỤC LAMB TRONG MÔI TRƯỜNG ĐÁN HỦY PHI TUYỂN CÓ BIẾN, ĐẲNG BẠN ĐẦU THUẦN NHẤT

PHÁM THỊ OANH

Dài toàn truyền sóng trong một lớp vật liệu dẫn hồi màu tuyển với biên độ ban đầu thuan nhai, đối xứng trước có biên độ ban đầu với sự di chuyển qua trong các sóng truyền [1, 2]. Trong bài này em xét đặc điểm làm bàn toàn biên độ sóng, để là bài toán đối xứng truyền Lamb. Trong cả số các hệ thống có bản đã tuyển hình hóa trong hệ tọa độ trụ [4, 5] là áp dụng những phương biến đối tích phân để giải bài toàn đối với vật liệu màu thể dẫn hồi cơ động tùy y. Trong trường hợp ban đầu hồi tổ y và không có ứng suất ban đầu, các kết quả nhan duơc tìm thấy các kết quả đã biết [5].

§ 1. ĐẶT VĂN ĐỂ

Xét bài toán đối xứng truyền Lamb trong ban không gian cự kết cấu từ vật liệu dẫn hồi non duơc, với thể hiện đủng tùy ý. Trong ban không gian tồn tại biên độ ban đầu thuan nhai, đối xứng trước.

\[U_x^0 = q \lambda - 4\varpi, \quad U_y^0 = 0. \]

Trên biên \(z = 0 \) giới hạn ban không gian có hiệu một tích động \(P(r, \varphi) = p(r) \cos \varphi \)

khuôn theo trẻ \(r \). Ta cần xác định hiệu chuyển và ứng suất trong biên không gian giây ra bởi \(P(r, \varphi) \).

Bài toán đặt ra ở đây là bài toán phi tuyển (ôa và linh hoạt và vật lý), ứng dụng các phương truyền sóng chỉ có biên [4]:

\[\begin{align*}
\rho c_0 \frac{\partial^2 u}{\partial t^2} & = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \quad \text{trong \(\varphi = 0 \)}.
\end{align*} \]

Khi đó phương truyền sóng ở trong \(\varphi = 0 \):

\[\begin{align*}
& \left(\lambda \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2} \right) + \left(\lambda + 2\mu \right) \frac{\partial^2 u}{\partial x^2} + (\lambda + \mu) \frac{\partial^2 u}{\partial y^2} + \\
& + \chi \left(2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) - \frac{1}{r^2} \left(\lambda \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2} \right) + \\
& + \frac{1}{r^2} \left(\lambda \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2} \right) \frac{\partial^2 u}{\partial \varphi^2} + \left(\lambda + \mu \right) \frac{\partial^2 u}{\partial z^2}. \quad (1.2)
\end{align*} \]
và điều kiện biên và dạng [5]:

\[
\lambda_1\beta_{12}u_{12} + \lambda_2\beta_{13}u_{13} + \lambda_3u_{13} + x_0 = 0,
\]

\[
\lambda_1\beta_{12}u_{12} + \lambda_2\beta_{13}u_{13} + \lambda_3u_{13} + x_0 = -P(r)e^{i\omega_t},\tag{1.3}
\]

\(x_0, \beta_{ij}\) là các hằng số phụ thuộc vào dạng của thể đan hội và trạng thái biên dạng ban đầu [6]. Biên dạng và đường suy dựa xác định như hình học và vị trí đối tuyển tính biên [4, 6]:

\[
2\lambda_1 = (\delta_x^m + \nabla_r^{m})\nabla_f U_m + (\delta_1^m + \nabla_x^{m})\nabla_f U_m,
\]

\[
u_m = \omega_1\alpha\beta_{12}u_{12} + \omega_2\beta_{13}u_{13} + \frac{1}{\lambda_1}(\omega_1\alpha_{12} + \omega_2\alpha_{13})U_2,
\]

trong đó \(U_2\) là thành phần biên biệt của vector chuyển dịch trong hệ toa độ tự. Thành phần này liên hệ với thành phần vị trí của vector chuyển dịch theo công thức:

\[
U_1 = U_3 = rU_0; \ U_2 = U_6.
\]

cô \(U_1, U_2\) là thành phần biên biệt của ten xo ô biên bang Grin, \(U_3\) là thành phần phân biệt của ten xo ô biên suốt Kieckhöp, \(U_4, U_5\) là hâm của \(\lambda_1, \omega_1, \omega_2, \beta_{12}\) [3].

Để giải quyết bài toán định ra, ta chỉ cần xác định \(U_3, U_6\) theo (1.2), (1.3).

§ 2. PHƯƠNG PHÁP GIẢI

Dựa vào hàm \(X\) và biên định [4]

\[
U_r = -\frac{\partial^2 X}{\partial \rho \partial z}; \ U_0 = h \left(\Delta + \frac{\partial^2}{\partial z^2} - B \frac{\partial^2}{\partial t^2} \right) X,
\]

trong đó:

\[
\Delta = \frac{\partial^2}{\partial z^2} + \frac{1}{v} \frac{\partial}{\partial t}, \ h = \lambda_1\beta_{12}u_{12} + \frac{1}{\lambda_1}(\omega_1\beta_{12} + \omega_2\beta_{13}),
\]

\[
\lambda_1 = \frac{\lambda_1^2(\alpha_{12} + \beta_{12})}{\lambda_1^2(\alpha_{11} + \beta_{11}) + x_1}, \ B = \frac{\rho}{\lambda_1^2(\alpha_{11} + \beta_{11}) + x_1}.
\]

Thay (2.1) vào (1.2) ta thấy phương trình thủy nhiệt thông mạn dừng nhất, phương trình thác hải đạn và phương trình đối với \(X\)

\[
\left[\left(\Delta + \frac{\partial^2}{\partial z^2} - B \frac{\partial^2}{\partial t^2} \right) \left(\Delta + F \frac{\partial^2}{\partial z^2} + D \frac{\partial^2}{\partial t^2} \right) \right] X = 0,
\]

trong đó \(\Delta, B\) xác định theo (2.2) có

\[
F = \frac{\lambda_1^2(\alpha_{12} + \beta_{12})}{\lambda_1^2(\alpha_{11} + \beta_{11}) + x_1}; \ D = \frac{\rho}{\lambda_1^2(\alpha_{11} + \beta_{11}) + x_1}.
\]

Để giải (2.3) ta dùng phương pháp đối tổ phân Hanken. Như 2 véc x\(E\) của (2.3) với \(r_{0}(x, t)\) rơi tich phân từ \(0\) đến \(\infty\) theo \(r\), cẩn ý là dạng \(\int_{0}^{\infty} e^r dr\) và \(\int_{0}^{\infty} e^{-r} dr\) có thể hoán vị được, ta đỉ được kết quả:

\[
\int_{0}^{\infty} \Delta X J_0(\alpha t) r dr + \left[\left(\Delta + F - E \right) \frac{\partial^2}{\partial z^2} - \left(B + 1 \right) \frac{\partial^2}{\partial t^2} \right] \int_{0}^{\infty} \Delta X J_0(\alpha t) r dr +
\]

\[+ \left[A\Phi \frac{\partial^4}{\partial z^4} - (A D + B F) \frac{\partial^4}{\partial x^4} + B D \frac{\partial^4}{\partial t^4} \right] \int_0^\infty \chi J_0(\alpha r) \, dr = 0. \quad (2.5) \]

Ký hiệu

\[\chi(x, z, t) = \int_0^\infty \chi(r, z, t) J_0(\alpha r) \, dr \quad (2.6) \]

là biến đổi Hankel của hàm \(\chi \). Từ (2.5) ta nhận được phương trình đối với \(\chi \):

\[x^4 \chi - \alpha^2 \left((A + F - E) \frac{\partial^2}{\partial z^2} - (B + D) \frac{\partial^2}{\partial t^2} \right) \chi + \]

\[+ A \Phi \frac{\partial^2 \chi}{\partial z^2} - (A D + B F) \frac{\partial^2 \chi}{\partial x^2} + B D \frac{\partial^4 \chi}{\partial x^4} = 0. \quad (2.7) \]

Đặt

\[\overline{\chi}(x, z, t) = e^{i\omega t} \Phi(x, z) \quad (2.8) \]

và cơ \(x \) là tâm số, từ (2.7) ta nhận được phương trình

\[A \Phi \frac{d^4 \Phi}{dz^4} - [x^2 (A + F - E) - \alpha^2 (A D + B F)] \frac{d^2 \Phi}{dx^2} + \]

\[+ [x^4 - \alpha^2 (B + D) \omega^2 + B D \alpha^4] \Phi = 0. \quad (2.9) \]

nghiệm của (2.9) thỏa mãn điều kiện giới nội khi \(z \to \infty \) có dạng:

\[\Phi = N_1 e^{-k_1 z} + N_2 e^{-k_2 z} \quad (2.10) \]

trong đó:

\[k_1 = \sqrt{\frac{1}{2A\Phi}} \left(\frac{x^2 (A + F - E) - \alpha^2 (A D + B F) \pm [x^2 (A + F - E) - \right. \]

\[- \alpha^2 (A D + B F)]^2 - 4A\Phi [x^4 - \alpha^2 (B + D) \omega^2 + B D \alpha^4] \left. \right\)^{1/2} \]

\[N_1 = N_1(x); \quad N_2 = N_2(x). \]

Từ (2.8) ta suy ra:

\[\chi = e^{i\omega t} (N_1 e^{-k_1 z} + N_2 e^{-k_2 z}) \quad (2.11) \]

và do đó:

\[\chi = e^{i\omega t} \int_0^\infty (N_1 e^{-k_1 z} + N_2 e^{-k_2 z}) J_0(\alpha r) \, dr. \quad (2.12) \]

Thế (2.12) vào (2.1) ta nhận được \(U_r, U_x \):

\[U_r = -e^{i\omega t} \int_0^\infty (N_1 e^{-k_1 z} + N_2 e^{-k_2 z}) x^2 J_1(\alpha r) \, dr. \]

\[U_x = be^{i\omega t} \int_0^\infty (\xi_1 N_1 e^{-k_1 z} + \xi_2 N_2 e^{-k_2 z}) x J_0(\alpha r) \, dr. \quad (2.13) \]

trong đó:

\[\xi = \pm \sqrt{\alpha^2 - x^2} \quad (2.14) \]

Bây giờ ta căn rắc định các hệ số \(N_1, N_2 \).
Thế (2.15) và diện kiến biên (4.3), sau khi áp dụng công thức phần Hanken được giải (2.15).

Nhân 2 về của phương trình (2.15) với \(\lambda (\alpha r) \), (2.16) với \(r_i(\alpha r) \) rồi tích phân theo \(r \) từ 0 đến \(\infty \) ta được kết quả:

\[
-\lambda \beta_3 b \int_0^\infty (N_k + N_k^2) \alpha^2 I_r(\alpha r) \, dr = -\int_0^\infty \lambda (\alpha r) \, dr.
\]

(2.16)

Ta lại áp dụng phép biến đổi tích phân Hanken để giải (2.15).

Nhân 2 về của phương trình (2.15) với \(\lambda (\alpha r) \), (2.16) với \(r_i(\alpha r) \) rồi tích phân theo \(r \) từ 0 đến \(\infty \) ta được kết quả:

\[
-\lambda \beta_3 b \int_0^\infty (N_k + N_k^2) \alpha^2 I_r(\alpha r) \, dr = -\int_0^\infty \lambda (\alpha r) \, dr.
\]

(2.16)

Ở đây \(\overline{P}(\alpha) \) là biến đổi Hanken của \(P(r) \):

\[
\overline{P}(\alpha) = \int_0^\infty P(r) r_i(\alpha r) \, dr.
\]

Từ (2.16) ta có được phương trình để xác định \(N_1, N_2 \):

\[
\begin{align*}
\gamma (\alpha) N_1 + \alpha (\alpha) N_2 & = 0, \\
\tau (\alpha) N_1 + \nu (\alpha) N_2 & = \overline{P}(\alpha).
\end{align*}
\]

(2.17)

Giải (2.17) ta có kết quả:

\[
\begin{align*}
N_1 & = \frac{\gamma (\alpha) - \nu (\alpha) \tau (\alpha)}{\gamma (\alpha) - \nu (\alpha) \tau (\alpha)}, \\
N_2 & = \frac{\gamma (\alpha) + \nu (\alpha) \tau (\alpha)}{\gamma (\alpha) - \nu (\alpha) \tau (\alpha)}.
\end{align*}
\]

(2.18)

trong đó:

\[
\begin{align*}
\gamma (\alpha) & = \alpha \beta_3 b \alpha^2 + \lambda (\alpha r) \beta_2 b_2, \\
\tau (\alpha) & = \lambda (\alpha r) \alpha b_2 + \alpha \beta_3 b \alpha^2 + \lambda (\alpha r) \beta_2 b_2.
\end{align*}
\]

(2.19)

bí, khi xác định theo các công thức (3.3), (2.10), (2.11). Trong (2.13) cho \(\varepsilon = 0 \) ta able được dịch chuyển từ mặt biên \(\varepsilon = 0 \) :

\[
\begin{align*}
U(r, \varepsilon, t) & = -\varepsilon^{10} \int_0^\infty (N_k + N_k^2) \alpha^2 I_r(\alpha r) \, dr, \\
U_1(r, \varepsilon, t) & = \varepsilon^{10} \int_0^\infty (N_k + N_k^2) \alpha^2 I_r(\alpha r) \, dr.
\end{align*}
\]

(2.20)
§ 3. KẾT LUẬN

Từ các kết quả trên ta thấy rằng trong trường hợp xung điện xung đồng dẫn và xung đồng chiều dương hay xung đồng chiều âm thì điện trường và dòng điện có thể được tính từ biểu thức (2.1) của các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm. Cảm khác điều kiện của các hệ số kinh nghiệm đạo hàm ở đỉnh, điều kiện (2.37) và điều kiện (2.38) đều được đáp ứng.

Trọng nghĩa của việc này là rằng ta có thể sử dụng các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm để tính xung điện xung đồng dẫn và xung đồng chiều âm. Điều này cho phép ta đưa các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm vào các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm.

Trong trường hợp này, ta có thể sử dụng các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm để tính xung điện xung đồng dẫn và xung đồng chiều âm. Điều này cho phép ta đưa các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm vào các hệ số xung đồng xung đồng dương và xung đồng xung đồng âm.
7. PHẠM THỊ OANH. Sự truyền sóng mặt cỏ lay trên mặt trời của môi trường dân hội có biên dạng ban đầu. Tạp chí Cơ học số 2, 1084.

РЕЗЮМЕ
ОСЕСИММЕТРИЧНАЯ ЗАДАЧА ЛАМБА В НЕЛИНЕЙНОЙ УПРУГОЙ СРЕДЕ С НАЧАЛЬНЫМИ ОДНОРОДНЫМИ ДЕФОРМАЦИЯМИ

Описана на линеаризованную теорию развитию A. H. Гузбж, поставленная и решена осесимметричных задачи Ламба в упругой среде с начальными однородными деформациями и с произвольным видом упругого потенциала. Получены в общем случае формулы для перемещений. В случае линейного упругого потенциала, когда в среде отсутствуют начальные деформации полученные результаты совпадают с известными результатами линейной теории упругости.