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A SYSTEM OF VAN DER POL TYPE
UNDER NONLINEAR PARAMETRIC EXCITATION -

NGUYEN VAN DINH - TRAN KM CHI
Institute of Mechanics, Hanoi Vietnam

In [1], the interaction between self-excited oscillation and parametric one in a system of Van der
Pol type subjected to nonlinear restoring force harmonically depending on time has been studied.
There, the parametric excitation is rather intense (in comparaison with the self-excitation) while
its nonlinearity is relatively weak; consequently, the resonance curves obtained are similar to those
of the well-known “pure” parametrically excited system. Below a system of same category will
be considered, assuming that the intensities of the two excitations are of same order and as in 2,
chapter 4, §4] for a generalized Mathieu system - the time-dependent nonlinearity is strong enough.
With these assumptions, the form of the resonance curve is various. In crder to reveal all possible
forms of the resonance curve, the so-called critical stationary oscillations will be used (3, 4].

1. System under consideration

Let us consider 2 quasi-linear oscillating system __descr'ibe_d by the differential equation:
F+wiz= g{Az + h(1 — kz?) + 2u(z — p2® + ¢2°) cos nw't} (11)

where: z is an oscillatory variable; overdots denote differentiation with respect to time ¢; € > 0 is
a small parameter; (h > 0;k > 0} and (21 > 0; p; g} are coefficients respectively characterizing the
gelf-excitation and the parametric one; nw (n = 1,2, 3) is the exciting frequency; eA = w? — 1 is
the detuning parameter (1 - own frequency).

Introducing slowly varying amplitude o and dephase ¢ by means of formulas:
£=acosy, i= —wasing, PYP=wt+d (1.2)

and applying the asymptotic method, we obtain:
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where
= %,u.pa.si.n 20, Fp= p(—;-qaz - 1) sin24, F; = %ppasin(i@,
Gy = gp.pa cos 28, Ga = p(ga® ~ 1) cos 24, Gs = —;—,u.pa, cos 36.
The equations for determinating stationary oscill.atior;s are:
fn=0, g,=0, (n=1,2,3) (1.4)
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2. The casesn=1; 3

In these cases, the resonance curves only consist of the ordinary parts given respectively by:

1 2 A% 1
-forn=1: W(A,a2)=h2w2(-4-haﬂ—l) +?—Zu2p2a2=q, | (2.1)
22l -V A2 1222 : <
-forn=3:W(A,a)=hw(Zk —1) +A - HPe = 0. {2.2) ;

Since A is assumed to be small (A < 1) the resonance curves do not intersect the abscissa axis
A (this means that the effect of the parametric excitation is relatively weak). Moreover, the
resonance curves always pass through the ends of a segment-denoted by Jy - parallel to the axis Cd
A, respectively given by: '

4
-forn=1: —S,up/\/l: <A K 3‘pp/\/.f;; a?=d2= % (2.3)
o , ‘
~forn=3: --pp/\/ESASHP/,‘/E; a2=a§=z (2.4)
a2 = 3 is the amplitude of the “pure” self-excited o g?

oscillation (x4 = 0); so, Jo represents the “level”
of the oscillation in the “original® Van der Pol
system (this level is related to the negative fric-
" tion k-the ratio between the negative friction and
 the positive one). As an illustration, let us choose
n=38; u=0.05p=1; k=4 (aj =1). The res-
onance curves (1) (2) shown in Fig.1 have been
drawn for h = 0.05; 0.1, respectively. We see that
the resonance curves are of form “oval” and “en-
velop” the segment Jo. Increasing h (the positive
friction - the intensity of the self-excitation), the
resonance curves become narrower and “tend” to

Jo (this means that when A is large enough, the 7 7025 -
amplitude of the “mixed” oscillation is near that e
of the pure self-excited one}. Evidently, if & is too _ Fig. 1

small or if a3 = 4 is too large (k small the segment Jy goes up to infinity), the resonance curves
take the form “parabola” (the half-lower part of the mentioned “oval®)

3. The cases n = 2. Ordinary and critical stationary oscillations

In this case, the equations (1.4) are:

,u(lqa.2 - 1) sin 24 = h.w(;;l-.’m2 - 1),

2 (3-1)
p(ga? — 1) cos 20 = A.
In the ordinary region where: :
1
(50 - 1) (ae? = 1) #0, (3.2)
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the ordinary part of the resonance curve is given by:

2
W (Tha? - 1) A2 03)
W(A,a%) = — bt —1=0. 3.3

- 1)2
w2 (500% - 1) ‘“_(q“ )
The critical region in characterized by the equality:
1, 2 _

(2qa 1) {(ga® — 1) =0. (3.4)

It congists of two straight lines-denoted by (I) (II) respectively - parallel to the abscissa A:
- 2 .
(I): of=a2== (I): a.2=a§=5- (3.5)
If ¢ > 0 and large enough, the two critical lines (I) (II) are present in the acceptable resonance
domain {a? not too large). Along (1), the equations (3.1) become:
| h
...E,ustO = hw(za - 1), Ocos 20 = A. (3.6)

From these equations, it is easy to deduce that the compatible point 7, of coordinates

1
A, =0, a?=al== (3.7)
q
is a critical representing point if .
h<ho=Bl2E ) | (3.8)
214q .

Analogously, when k = 2g, the critical line (I} contains a critical segment - denoted by J;J; -
determined by:

-u<BASp P=d= % ' (3.9)
The “whole” resonance curve can be determined by the relationship
1 2 1 2
oy _p2 2L, 2 2_n2. (1 3 _ 2
W(4, a*) = hw (4ka 1) (ga* — 1) +(2q I)A
1 2
- (-2-qa2 1) (ga* -1 =0, (3.10)

on condition that must be rejected the point I, when h > h, and also those points of (II} do not
satisfying the inequalities (3.9), if k£ = 2q.

If b < h., I is a nodal point; if A = h,, I, is either a returning point or a degenerated nodal
one (with a double tangent); if A > k., I, becomes an isolated point, it does not belong to the
Tesonance curve.

As in §2, the resonance curve possesses some interesting properties;

- For small h : h < by = {2 - 24/1— p2 }/2 (a little larger than ), the resonance curve
intersecis A;

- The resonance curve always passes through the two ends of the segment Jy which is now
given by

4q 4q | g a 4 . '
— — < — H = _—— . .
,ul A 1| ASplk 1}; a ag p (3 11)
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i k= 2q, Jo becomes Ji.Jo; i ¢g = &, Jo is reduced to the point L. (&, =0, o = % =i aZ).
; q

4, The cage n = 2. Various forms of the resonance curve

The form of the resonance curve essentially depends on:

- the rate between the intensity h of the self-excitation {the positive friction) and the intensity
4+ of the linear parametric one.

- the relative distribution between the segment J, and the two critical lines (I) (II). Let us
recall that Jp represents the level of the pure self-excited cacillation and it iz determined by k-the
negative friction. As to (I) (II), they are related to q—the ratio between the cubic and the linear
coefficients of the time dependent restoring force.

We shall fix the parametric excitation: u =

1
0.05; ¢ =2;s0: a2 = 5 a2 = 1; hy =~ 0.050016 >
#. Then for each chosen value k, the rescnance
curves will be drawn for different values A,
1. The case k < 4 {but not too small): ¢f =

% > a2 = 1, Jy lies above (II). Let us choose

k = 3; sc: a§=-:~>1'h = 004 < u < hy. The

resonance curves (1} {2} {3} (4] shown in Fig.2 | (7

have been drawn for .’1 == 0.025; 0.04; 0.045; 0.055 Ly

respectively. The resonance curve consists of two 7 (2

branches, separated by the critical line (II}. The 3 fad )

upper branch " always passes through the two 40 1 R A R e 7

: ~0.25 0.25 :
. ends of the segment Jg( 0% cax 5 ja? = -0.15 0.9
: 4
af = §) As h increases, C" becomes narrower, Fig.2

it will envelop Jy then finally tends to Jy. For small A, the lower branch C' intersects A and has
a nodal point f,.. As h reaches the value A., I. becomes a returning point; then, it changes into
an isclated point when A& > h,.. The lower branch €' continues to cit A nuntil A = h; at which, it
is transformed into ¢ (very small) “oval” tangent to A. Increasing further h, the “oval” C' leaves
-£A,.it becomes narrower then finally disappears.

2. The case k = 4 - This is the particular case & = 2¢q. The segment Jp becomes the critical
segment JiJ3(—0.05 < A < 0.05;a% = af = a2 = 1}, h. = 0.05 = z < hy. In Figs 3, 4 the
resonance curves {1) {2} {3} (4) (5) correspond to h = 0.04; 0.05; 0.050005; 0.050010; 0.050020
respectively. For every value h, the segment J1J; is the critical segment. If A < 0.05 = A,, the
resonance curve intersects A and has a nodal point I,. As A = A, = 0.05, I, becomes a degenerated
nodal point. For h > h,, the upper and lower branches C* and C' appear. Increasing further 4,
the upper branch C" moves up, the lower one C' moves down, changes into an “oval” then finally
disappears
% <l= ag, Jy lies between two critical lines (I} and
(Z3}. Let us choose k= 5; s0: aZ = —; h. = 92 > hy > ju The resonance carves (1} (2) (3) (4) (5)
shown in Fig. 5 have been drawn for A = 0.0300; 0.0500; 0.0550; 0.0666; 0.0800 respectively. We
also obtain a resonance curve with two branches, separated by the critical line (II). As A increases,

3. Thecase d< k<8 dd==-<al=

o N"'"“

24



the upper branche C" moves up. For small A, C' intersects A and has a nodal point I.. '
intersects A until A = h; at which it becomes to take the form of an eight. Increasing further A,
the lower “loop” of the eight becomes narrower then disappears, I, changes into a returning point
then an isolated one, C' is finally transformed into an “oval”, enveloping Jo and tends to Jo.

. ¥4
-af . a
i (2)-] .
100 I /
4 | %
o 1)
ﬂ”ﬂ =1 T T / T T L
-0.0¢ 200 4
Fig. 8 Fig. 4
Fig.5
4. The case k = 8732 = 1.1 a3, Jo is re&uced to L., h. = co. In Fig. 6, the resonance

curves (1) (2) (3) correspond to h = 0.04; 0.05; 0.06 respectively. The critical point “persists” and
the eight is the “final” form of the resonance curve.

5. The case k > 8: a3 < % = a?, Jo lies under the critical Iine (I). Let us choose k = 12; sor

% < -;—; h. = 0.05 < h;. The resonance curves (1) (2) (3) (4) shown in Fig.7 correspond to
3 -

h = 0.02; 0,03; 0.05; 0.08 respectively

=

2
0=
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Fig. 6

5. Some supplementary remarks

Our main purpose is to reveal all the possible forms of the resonance curve. On other features
of the system considered, we give some supplementary remarks '

1. The time-dependent nonlinearity is assumed to be strong enough; so, ¢ is large and the
critical part (I, and JyJ;) of the resonance curve is located in the acceptable (a2 is not too large}
resonance domain. If the mentioned nonlinearity is weak (¢ small) or of soft kind (g < 0), the
critical part “goes out off” the resonance domain. In this case, the resonance curve is relatively
simple. As an illustration, in Fig. 8, for 1 = 0.05 {h; ~ 0.050016), k = 4 (a3 = 1}, ¢ = 0.2 (o = 5;
a3 = 10), the resonance curves (1) (2) (3} correspond to k = 0.04; 0.05; 0.06 respectively.

2. The system (1.1} does not contain “free” nonlinear terms. If these terms are present and
small, the results obtained above can be applied with light modifications, For example, in the case
n = 3 with the presence of free cubic term (—eyz®), we have:

- the equations of stationary oscillations:

,u.(lqa2 —.1) sin 26 = hw(ikag - 1),

2
3+

2 (5.1)
p(ga® — 1) cos 20 = ( - Ta.z)

- the “invariants”:

IS
[of ]

(Jo):a2==, (D:a =$, (II):a%:-z-, h1=j(2-2\/1—,u2)1/2 (5.2)

- the coordinates of I,:

_3y a3 _a2_1
A*-—4a1-4q, a,—al—q (5.3)

_ Bk _ 3 -
b=t '4q 1,\/1-1- . (5.4)
26 :

and



- the segment Jo:

3 3 9 4 :
o} - ulgad ~ 1] < A< Tad +plgad ~ 1], ag=7 (5.5)

which becomes the critical segment J;J; when &k = 2¢:

37 _ 3y P |
——p AL —+ 6’ =a5=— : 5.6
2g ] 2q £ 2 g ( )

- the relationship (3.10):
1 a ., 2 87 \2/1 2
—p2,2( a2 _ 2 _ 3 o\ (L 2 _
W(A,a)—hw (4ka 1) (ga 1)_ +(A 1 ) (2qa, 1) |
1 2 2 "*
- pz(aqaz - 1) {ga® ~1)" =0. (5.7)
The resonance curves {1) (2) (3) shown in Fig.9 have been drawn for s = 0.05; ¢ = 2; k = 0.055;

k =5 and 4 = 0.08; 0.12; 0.16 respectively. The resonance curves lean to the right, it is the main
effect of the positive free cubic nonlinearity ' '

a (1) a?
1.00 — 250
i @)
aoa ¥ T T T T T [200
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Fig.8 | Fig.9
3. The stability study is based on the variational equations and the two stability conditions
are: :
a2>a¥=qi, 1 .1 g—g>0. ' (5.8)
: Zga® — 2
(2qa 1) (ga® ~1)
Conclusion

The interaction between self-excited oscillation and parametric one in a system of Van der Pol
type subjected to strong time-dependent nonlinearity is examined. The form of the resonance curve
is various and depends on the intensities of the two excitations as well as on the nonlinearities.

This publication is completed with financial support from the National Basic Research Pro-
gramme in Natural Sciences.
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Hf: VAN DER POL CHIU KfCH DONG THONG s6 PHI TUYEN
Khao st twong téc giira dao déng théng s§ v3 tir chdn trong médt hé loai Van der Pol chiu

kich déng théng s8 phi tuyén. C4c dao déng dirng t&i han tdn tai. Cic dudmg cdng hwédng rit da
dang vi tdy thudc cwimg 49 céc kich dong ciing ahw mic d9 phi tuyén.
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