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A SYSTEM OF VANDERPOL TYPE 
UNDER NONLINEAR PARAMETRIC EXCITATION 
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Institute of Mechanics, Hanoi Vietnam 

In [1], the interaction between self-excited oscillation and parametric one in a system of Vander 
Pol type subjected to nonlinear restoring force harm6nically depending on time has been studied. 
There, the parametric excitation is rather intense {in comparaison with the self-excitation) while 
its nonlinearity is relatively weak; consequently, the resonance curves obtained are similar to those 
of the well-known "pure" parametrically excited system. Below a system of same category will 
be considered, assuming that the intensities of the two excitations are of same order and as in (2, 
chapter 4, §4] for a generalised Mathieu system - the time-dependent nonlinearity is strong enough. 
With these assumptions, the form of the resonance curve is various. In order to reveal a.ll possible 
forms of the resonance curve, the so-called critical stationary oscillations will be used [3, 4]. 

1. System under consideration 

Let us consider a quasi-linear oscillating system described by the differential equation: 

x + w2 x = e{ ~x + h{1- kx2 ):i; + 21'{"'- px2 + qx3
) cos nwt} {1.1) 

where: x is an osCillatory variable; overdots denote differentiation with respect to time t; e > 0 is 
a small parameter; {h > 0; k > 0) and {21' > 0; p; q) are coefficients respectively characterizing the 
self-excitation and the parametric one; nw (n = 1, 2, 3) is the exciting frequencyj el::i. = w2 - 1 is 
the detuning parameter {1- own frequency). 

Introducing slowly varying amplitude a and dephase 6 by means offormulas: 

x=acos,P, :i:=-wasint/1, .P=wt+O {1.2) 

and applying the asymptotic method, we obtain: 

. -ea -ea { ( 1 2 ) . } a= -fn = - hw -ka - 1 - Fn 
2w 2w 4 {1.3) aO = ~:a 9n = ~:a { ~ -an} {n = 1, 2, 3) 

i-.J' 

where 

3 a,= "2~-'pacos28, a2 = IL(qa2 -1)cos26, 
1 a.= 2~-'pacos36. 

The equations for determinating stationary oscillations are: 

fn = O, 9n = 0, {n = 1,2,3) {1.4) 
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2. The cases n = 1; 3 

In these cases, the resonance curves only consist of the ordinary parts given respectively by: 

(
1 )2 LJ.2 1 

-for n = 1: W(ll., a2
) = h2w2 4ha2

- 1 + 9- 4~'2p2a2 = 0, (2.1) 

(2.2) 

Since h is assumed to be small (h < 1) the resonance curves do not intersect the abscissa axis 
ll. (this means that the effect of the parametric excitation is relatively weak). Moreover, the 
resonance curves always pass through the ends of a segment-denoted by Jo - parallel to the axis 
ll., respectively given by: 

-forn=1: -3J'p/Vk :5 ll. :5 3pp/Vk; 

-forn=3: -ppfVk :5 A :5 PP/Vk; 

a~ = ~ is the amplitude of the "pure" self-excited 

oscillation (p = 0); so, Jo represents the "level" 
of the oscillation .in the "original" Van der Pol 
system (this level is related to the negative fric­
tion k-the ratio between the negative friction and 
the positive one). As an illustration, let us choose 
n = 3; p = 0.05; p = 1; k = 4 (a~= 1). The res­
onance curves (1) (2) shown in Fig.1 have been 
drawn for h = 0.05; 0.1, respectively. We see that 
the resonance curves are of form "oval" and "en­
velop" the segment J0 • Increasing h (the positive 
friction - the intensity of the self-excitation), the 
resonance curves become narrower and "tend" to 
Jo (this means that when h is large enough, the 
amplitude of the "mixed" oscillation is near that 
of the pure self-excited one). Evidently, if his too 

4 
a•=a5=k 

4 
a2 =a~=-

k 

Q 

Fig.1 

(2.3) 

(2.4) 

0,025 

small or if a~ = ~ is too large (k small the segment Jo goes up to infinity), the resonance curves 

take the form "parabola" (the half-lower part of the mentioned "oval") 

3. The cases n = 2. Ordinary and critical stationary oscillations 

In this case, the equations (1.4) are: 

In the ordinary region where: 

pGqa2 -1) sin20 = hwGka2 -1), 

p(qa2 - 1) cos 20 = A. 

Gqa2 -1)(qa2 -1) <F 0, 
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the ordinary part of the resonance curve is given by: 

(
1 2 )2 h2w2 -ka - 1 a• 

w(a,a•)= .. (14 )2 + 2( a•-1)2 -1=0. 
1'2 -qa2 - 1 I' q ... 2 

(3.3) 

The critical region in characterized.by the equality: 

Gqa2 -1)(qa2 -1) = 0. (3.4) 

It consists of two straight lines-denoted by (I) (II) respectively - parallel to the abscissa A: 

(I) : 
1 

a2 =a~=-; 
q 

(II)·, 2 
a2 =a~=-· 

q 
(3.5) 

If q > 0 and large enough, the two critical lines (I) (II) are present in the acceptable resonance 
domain (a2 not too large). Along (I), the equations (3.1) become: 

-~Jtsin20 = hw(A -1), Ocos20 =A. (3.6) 
2 4q 

From these equations, it is easy to deduce that the compatible point I. of coordinates 

A.*= o, (3.7) 

'is a critical representing point if 

h<h =!!.1~-11. - * 2 4q 
(3.8) 

Analogously, when k = 2q, the critical line (II) contains a critical segment - denoted by J1J2 -
determined by: 

2 
a2 =a~=-· 

q 

The "whole" resonance curve can be determined by the relationship 

W(a, a2
) = h2w2 (~ka2 - 1 )" (qa2

- 1)2 + Gqa2 -1)" a• 

-Jt2 Gqa2
- 1)' (qa2

- 1)2 = 0, 

(3.9) 

(3.10) 

on condition that must be rejected the point I. when h > h. and also those points of (II) do not 
satisfying the inequalities (3.9), if k = 2q. 

If h < h., I. is a nodal point; if h = h., I, is either a returning point or a degenerated nodal 
one (with a double tangent); if h > h., I. becomes an isolated point, it does not belong to the 
resonance curve. 

As in §2, the resonance curve possesses some interesting properties: 

- For small h : h :5 h1 = (2 - 2y'1- 1'2 ) 112 (a little larger than Jt), the resonance curve 
intersects A.; 

- The resonance curve always passes through the two ends of the segment Jo which is now 
given by 

2 2 4 a=a0 =-· 
k 

(3.11) 
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If k = 2qj J0 becomes J 1 .J2 ; if 4q = k) J0 is reduced to the point L 
4 1 

(.:1. = 0, a5 = - = - = az). 
k q 

4, The case n = 2. Various forms of the resonance curve 

The form of the resonance curve essentially depends on: 

- the rate between the intensity h of the self~excitation (the positive friction) and the intensity 

j}, of the linear parametric one. 

- the relative !listribution between the segment J 0 and the two critical lines (I) (II). Let us 
recall that J0 represents the level of the pure self-excited oscillation and it is determined by k-the 
negative friction. As to (I) (II), they are related to q-the ratio between the cubic and the linear 
coefficients of the time dependent restoring force. 

We shall fix the parametric excitation: I' = 
1 

0.05; q = 2; so: a~ = Z ; a~ = 1; h1 "' 0.050016 > 
p,. Then for each chosen value k, the resonance 
curves will be drawn for different values h. 

1. The case k < 4 (but not too small): a6 = 
4 

> a~ = 1, Jo lies above (II). Let us choose 
k 

4 
k = 3; so: a5 = 3 > 1; h. = 0,04 <I' < h 1 . The 

resonance curves (1) (2) (3) (4) shown in Fig. 2 
have been drawn for h = 0.025; 0.04; 0.045; 0.055 
respectively. The resonance curve consists of two 
branches, separated by the critical line (II), The 

'2} 

1.00 

c' 
upper branch C" always passes through the two 0.00--+-,--,-..,...L.fL--.-"-t-'-.--.--,--

d f h J ( 
-0.25 < A < 0.25 2 -0./5 0.00 L\ en s o t e segment 0 -

3
- _ '-' _ -

3
-; a = · 

a~ = ~). As h increases: C" becomes narrower, Fig. 2 

it will envelop Jo then finally tends to Jo. For small h, the lower branch C' intersects Ll and has 
a nodal point 1*. Ash reaches the value h*, L, becomes a returning point; then, it changes into 
an isolated poh'lt when h > h •. The lower branch C' continues to cut ~ until h = h 1 at which, it 
is transformed into a (very small) "oval" tangent to A. Increasing further h, the "oval" 0 1 leaves 
A, .. it becomes narrower then finally disappears. 

2. The case k = 4 - This is the particular case k = 2q. The segment Jo becomes the critical 
segment J1J2 (-0.05:::; .:1:::; 0.05;a2 =a&= a~ = 1), h. = 0.05 =I'< h1 . In Figs 3, 4 the 
resona.nce curves (1) (2) (3) (4) (5) correspond to h = 0.04; 0.05; 0.050005; 0,050010; 0.050020 
respectively. For every value h, the segment J1J2 is the critical segment. If h < 0.05 = h., the 
resonance· curve intersects ~and has a nodal point L •. As h = h* = 0.05, I* becomes a degenerated 
nodal point. For h > h., the upper and lower branches C" and C' appear. Increasing further h, 
the upper branch 0 11 moves up, the lower one C' moves down, changes into an "oval" then finally 
disappears 

3. The case 4 < k < 8: ai = ~ < a5 = I < 1 = a~, J0 lies between two critical lines (!) and 

(II). Let us choose k = 5; so: a5 = ~;h. = 
0~2 > h1 >I'· The resonance curves (1) (2) (3) (4) (5) 

shown in Fig. 5 have been drawn for h = 0.0300; 0.0500; 0.0550; 0.0666; 0.0800 respectively. We 
also obtain a resonance curve with two branches, separated by the critical line (II). As h increases, 

24 



the upper branche C" moves up. For small h, C' intersects ~ and has a nodal point I.. C' 
intersects ~ until h = h1 at which it becomes to take the form of an eight. Increasing further h, 
the lower "loop• _of the eight becomes narrower then disappears, I. changes into a returning point 
then an isolated one, C' is finally transformed into an "oval", enveloping Jo and tends to Jo. 

O.OQ~-f~.-.-~-.-,~~--­

-Q.Q-1 O.QQ Ll -O.QQS 

Fig. a 

{f) 
C" 

---------- :0: 

O.OQ----jL-,----,-----,-:"'-f.O:::..,.---,-~ 

-O.Q-f OOQ 

Fig.5 

4. The case k = i:" a~ = ~ = ~ = <1~, Jo is reduced to I., h. = oo. In Fig. 6, the resonance 

curves (1) {2) {3) correspond to h = 0.04; 0.05; 0.06 respectively. The critical point "persists• and 
the eight is the "final" form of the resonance curve. . 

5. The ease k > 8: a~ < ~ = a~, Jo lies under the critical line (I). Let us choose k = 12; so: 

a~ = ~ < ~; h.= 0.05 < h1. The resonance curves {1) {2) {3) {4) shown in Fig. 7 correspond to 

h = 0.02; 0.03; 0.05; 0.08 respectively 
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0.50 
o.so 

O.M-r~--,-~-r~--,-~~ 
-0.04 0.00 Ll 

o.oo-r'+---.--.-:::r-.-"1'--,.-.-'r-'--­
-o.os 0.00 

Fig.6 Fig. 7 

5. Some supplementary remarks 

Our main purpose is to reveal all the possible forms of the resonance curve. On other features 
of the system considered, we give some supplementary remarks 

1. The time-dependent nonlinearity is assumed to be strong enough; so, q is large and the 
critical part (I. and J1J2 ) of the resonance curve is located in the acceptable (a2 is not too large) 
resonance domain. H the mentioned nonlinearity is weak (q small) or of soft kind (q < 0), the 
critical part "goes out off" the resonance domain. In this case, the resonance curve is relatively 
simple. As an illustration, in Fig. 8, for 11 = 0.05 (ht ""0.050016), k = 4 (a~ = 1), q = 0.2 (a~.= 5; 
a~ = 10), the resonance curves (1) (2) (3) correspond to h = 0.04; 0.05; 0.06 respectively. 

2. The system (1.1) does not contain "free" nonlinear terms. H these terms are present and 
small, the results obtained above can be applied with light modifications. For example, in the case 
n = 3 with the presence of free cubic tet:m (-e1x3 ), we have: 

and 

- the equations of stationary oscillations: 

• the "invariants": 

4 
(Jo): a~= k , 

- the coordinates of I.: 

1 
(I):a~=-, 

q 
(II):a~=~, h1 =(2-2v'1- 11• )'1

2 

q 

h.=!!.,~- 11v1 + 31 
2 4q 4 
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• the segment Jo: 

(5.5) 

which becomes the. critical segment J1 J2 when k = 2q: 

3') 3') --H<t:.<-+H 2q ,.. - - 2q ,.. ' (5.6) 

• the relationship (3.10): 

(1 )2 2 ( 3') )2(1 )2 W(t:., a) = h2w2 -ka2
- 1 (qa2

- 1~ + t:.- -a2 -qa2
- 1 

. . 4 4 2 

( 
1 )2 2 - p2 

2qa2 - 1 ( qa2 
- 1) = 0. '· . (5.7) 

The resonance curves (1) (2) (3) shown i~ Fig. 9 have been drawn for p = 0.05; q = 2; k = 0.055; 
k = 5 and 1 = 0.08; 0.12; 0.16 respectively. The resonance curves lean to the ri~ht, it is the main 

effect of the positive free cubic nonlinearity 

1.00 

(f) (2}(3) 

0.~-r--,_~~~r-~~~ 
-0.05 o.oo /J. 

o.oo-r-.-.-.-,,-.-.-.--r­
-0.04 0.06 

Fig.B Fig. g 

3. The stability study is based on the variational equations and the two stability conditions 
are: 

Conclusion 

1 
a2 > af =­

q 
(5.8) 

The interaction between self-excited oscillation and parametric one in a system of Vander Pol 
type subjected to strong time-dependent nonlinearity is examined. The form of the resonance curve 
is various and depends on the intensities of the two excitations as well as on the nonlinearities. 

This publication is completed with financial support from the National Basic Research Pro­
gramme in Nat ural Sciences. 
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H~ VAN DER POL CHJU KfCH IJQNG TH6NG SO PHI TUYEN 

Kh!o sat tu-ang tac giii-a dao d(lng tho~g .g va tv ch~ trong m(lt h~ lo~ Van der Pol chju 
klch d(lng thang s6 phi tuyin. Cac dao d(lng dli-ng tai h\'11 t~n t~. Cac d1rirng c(lng h1rlrng rO:t da 
d').ng va tuy thu(lc c1rirng d(l etc klch d(lng ciing nhU" mli-c d(l phi tuytn. 
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