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INTERACTION BETWEEN PARAMETRIC AND
FORCED OSCILLATIONS IN A QUASI-LINEAR
- OSCILLATING SYSTEM
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In [1], a quasi-linear oscillating system with time-dependent quadratic non-linearity subjected
to external excitation has been considered. It has been shown that there exists a certain interaction
between parametric and forced oscillations due to the quadratic nonlinearity and the external ex-
citation respectively. The fundamental resonance in the case of dephase 7 between two excitations
has been analyzed and two forms of the resonance curve have been obtained.

In the present paper the general case with arbitrary dephase between two excitations will be
exa.mmed Critical singular points [2] will be used to classify different forms of the resonance curve.

1. System under consideration. Ordinary and critical stationary escillations

Let us consider a quasi-linear oscillating system described by the differential equation:
i+wiz= s{ — hi + Az — yz° + 2pz® coswt + ¢ cos(wt + 0')}, (1.1)

where : z is an oscillatory variable; overdots denote the differentiation with respect to time t; € > 0
is a small parameter; i > 0 is the damping coefficient; - is the cubic non-linearity coefficient; e > 0,
2p > 0 and w are intensities and common frequency of the external and parametric excitations,
respectively; o (0 € ¢ < 2#) is the dephase between two excitations; €A = w? — 1 is the detuning
parameter (1 - own frequency). /

Introducing slowly varying variables (g, #} - amplitude and phase of the oscillations - by mean
of the formulae:
z=acosy, E=—wasing, Y=wi+4 (1.2)

and using the asymptotic method, we obtain, in the first approximation, the following averaged
differential equations:

a_w——--—f_-—i——{hwa+(1pa +ecoscr)sm9—csmor cosﬂ} (1.8)
aéz-—éi_ =__2_i_{ (3: 2 A)a-}-esmasmﬁ+(2pa +ecoso')cose}

Stationa.ry oscillations of constant amplitude and phase will be determined from the equations:
f=0, g=o. (1.4)
By Dy, Dy, D; we denote the determinants:
1, .
Epa +ecosco —esing
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In the ordinary region, where
1 3 2 BRY
D, = (Epa. + ecos 0') (Epa + ecos or) + (esing)® # 0, (1.6}

from {1.4), sin 6 and cos # can be calculated and the ordinary part C} of the resonance curve C is

obtained
_Di+D3

Wi{4,d?) = - 1=0. (1.7)
0
The critical region is characterized by the equality:
. . .

Dy = sz(az)z + 2p(ecos o}a’® + % = 0. (1.8)

Evidently, (1.8) has positive solutions a2 if:
-3
-1 <cosg < 5 (1.9)

. 5 T " . .
Thus: - if0< o < & T <0< 2, the critical region does not exist,

5 7 iy . . . . : X
- if —671 <e< %, the critical region exists and consists of two straight parallel lines:

4e 3
R 20 ==
a -31’( cosa:#\/cos ¢ 4) (1.10}

5 Tx
(a double straight line if ¢ = 5 oTo= ~é-)

To determine the critical part Cy (of the resonance curve C) we have to solve the equations:
. Do = 0, D1 = 0, ‘Dz =0 (111)
under the restrictions:

1 2 .
(Ejua2 + ecos cr) + (esing)? > h%w?a?,

: 1.12
esing)? + Epaz+ecosa' ? > -3-10,2—12\ 2a2.A ( )
2 4

As it has been shown in [2], by rejecting those points (A, a?) satisfying (1.11} but not (1.12),
the “whole” resonance curve C{Cy + C3) can be found from the relationship:

W{A,a®) = Dj + D3 - D =0. , {1.13)

By D we denote the discriminant:

p= (55 - (3a7) Gsemaes) (114
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- if I > 0, T is 2 nodal point
-if D < 0, Iiz an isolated point

2. System with dephase

~ This case has been analyzed in [1]. In this case, the system (1.11) (1.12) and the relationship
(1.13) are simple: '
1 , /3
Dy = (Epa - e)(-z—paz —e) =0,

D, = —hwa(%pa2 —¢) =0, (2.1)

Dy = a(%az - A) (%paz —¢) =0,

(%Im2 —e)% > K2uw?a?,

2.2)
3 2 3y 2 (
(Epa.2 —e) > (Ta2 - A)7e?,
2 2. 22/3 a_ vz, 2/l o 13,37 5 2
W(A,d?*) = h*w?a (Epu —e) +a (Epa -—e). (—4—5 -A) )
1 4 2,3 o 2
= (gpa® —¢)"(5pa® —¢)” =0. (2:3)
H h = 0 (system without damping), from (2.1) we obtain:
- a compatible point L. of coordinates {4, a?):
3 2e
A;= f.ag, =g (2.4)
- a compatible line J parallel to the abscissa axis A:
2e
a2=—=" 2.5
- | (23
It is not difficult to verify that:
- I satisfies {2.2) ie. Icorresponds to critical stationary oscillations, it’s a part of Cs.
- Along J, (2.2} is satisfied only, if:
3 3
-}a? —/2ep <AL %a? + +/2ep, (2.6)

i.e. along J, only segment J;J; determined by (2.5} (2.6) is representing segment - the second
part of Cp.

I k> 0 (system with damping), the compatibility conditions (2.1) admit only I as compatible
point at which the trigonometrical conditions (2.2} lead to the inequality:

4ep?

RR<hi=r—-—F .
= 3(ye + 2p)

: 2.7

Thus : - if h < h,, I is a representing critical point;
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- if A > h,, [ is an isolated point (and must be rejected).

The resonance curve of the system with damping consists of two branches: the upper ¢’ and
the lower C" lying respectively above and under the line J. The upper branch C” is of “parabolic”
form, the lower one C*" has a loop with the nodal point I. As h increases, C' moves up, whereas
C* moves down, the loop becomes narrower then disappears. )

In Fig.1, for fixed values ¢ = x, 7 = 0.1; e = 0.06; p = 0.2 the resonance curve. 1, 2, 8
corresponds to A = 0; 0.005; 0.1,

a2}

Fig. 1

3. The system with dephase %ﬂ <o#rn< Zé{

In this case, there are two compatible points I, J. Indeed, from the first equation Dy = 0 of
the system (1.11), we have obtained the ordinates:

4 3
aﬁj.:é(—cosai\}coszo‘—z) _ (3.1)

The second equation [D; = 0 can be written as:

: 3 |
Dy = (esino)w? + (Epa,-zj + ecosa)hw — (i}a?j +1)esine = 0. (3.2)

The positive roots are:

3 .
—fla?j,- + 1) e?sin® o

- gpcﬁ--*—ecoéa h+ Epa,:-"-+ecos::r21?1.2—}-4
£ 3

2

wi; =1+ A ;= -
7 ST 2esino



¥ A =0, we have:

3 3
—’Ia,-z‘j +1 or -:la?,- = Ay (3.4)

Wii = 1

3
. i.e. I and J Lie in the skeleton curve —g-az = A,

Evidently, the trigonometrical conditions (1.12) are satisfied. Thus, for the system without

T . - . o .
damping, %—r— <og#r < Y the resonance curve admits two critical points I, J lying in the

. .. 5m Tx )
skeleton curve (a double critical point if ¢ = 5 ro= —6-), these two points are of nodal type.

Increasing h, I, J move along two critical lines (1.10) respectively.
Differentiating (3.3) with respect to h, we obtain:

doyj (épa?j + ecos a){(%pa?j + ec§s cr)h - \ﬂépa?j -+ ezccbsa)2 + 4(2}0?3- + 1) ¢? sin” o’}

2 2
dh

3 3 . 2°
2esin a\/(-z-pafj -+ ecos o')zh.2 + 4(%@?9. +1)é? sin’ o

_ (3.5)
Since _
3
gpa.?j +ecoso = —ecosg F 2¢yfcos? o — > 0, (3.6)
we have ' -
d—;’;—b’-<oif sing >0 and d};’ > 0if sino <O. (3.7

Thus, when h increases [ and J move to the right {left) if sino > 0 (< 0). As h exceeds certain

" values h; ;, I, J change into isolated points.

In Fig.2, for fixed values ¢ = 1112’_"; 4 = 0.1; ¢ = 0.06; p = 0.2, the resonance curves 1, 2, 3

correspond to h = 0; 0.005; 0.1
a2

1
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In Fig.3, for fixed values ¢ = -i—zlr; 4 = 0.1; e = 0.06; p = 0.2, the resonance curves 1, 2, 3

correspond to h = 0, (.005; 0.1

al

Fig. 8

. . . 11w
We see that, increasing h the resonance curves move to the left in the casze o = T and to

137 . - . .
the right in the case ¢ = ——. As h exceeds certain value, the upper critical representing point J

disappears. The resonance curve is divided into two branches - the upper C' of “parabolic” form
and the lower C" with a loop. Increasing further h, the upper branch €' moves up, the lower "
moves down, its loop becomes narrower then disappears.

4. System with dephase 0 <o < ég, '—:—:E <o <2t

In this case, the critical region and consequently, critical singular points do not exist. If
h = 0, the resonance curve consists of two branches - the left branch C' and the right C", located
respectively in the left and in the right hand sides of the skeleton curve %az = A.

Increasing h, ¢’ and C” approach each other. The two branches €' and C" may connect

togother at an ordinary singular point which disappears immediately and the resonance curve is
divided into two branches - the upper and lower ones.:

In Fig.4, for fixed values o = %; 4= 01 e = 0.06; p = 0.2, the resonance curve 1, 2, 3
correspond to h = 0.04; 0.05; 0.06 respectively



a2

Fug. 4

5. Stability conditions

To study the stability character of the stationary oacillations, we use the variational equations:

adl = — — @5 < 99 &y
T 2w da é 2w df

where Sa, §0 are small perturbations of a, 8 respectively.

The characteristic equation iz of the form:

2

A &
ctp2 + Z—'w-S;lP + 74:533 =0 (5.2)

and conditions for asymptotic stability are:

5,=a2L 13, _
g, = 2f% dfdg '
2" 8288 8684

The first stability condition is satisfied only for the system with damping:

Sy =2hwe >0 ie h>0. (5.4)
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For the ordinary part C;, the second stability condition can be transformed into the compact

form: . oW

Dy a2

and can easily be used to determine ordinary stable portions bounded by vertical tangents.

>0 (5.5)

The stability character of each critical representing nedal point can directly be deduced from
that of the ordinary portion considered as containing it. In the figures presented heavy (broken)
lines correspond to stable {urstable) oscillations.

Conclusion

The interaction between parametric and forced oscillations in the fundamental resonance in
a quasi-linear oscillating system with time-dependent quadratic non-linearity is examined critical
singular points are used to classify different forms of the resonance curve depending on the dephase
between two excitations, the resonance curve admits either one or two critical singular points,
These points disappear if the damping is strong enough and the resenance curve is divided into
. two branches - the upper and the lower.
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TUONG TAC GITA KiCH DONG CUGNG BUC VA THONG sO
TRONG MOT HE DAO PONG A TUYEN

Xét twong téc gitta hai kich dfng cwdng bic vi théng s§ trong mét hé dao déng 4 tuyén cé
phi tuy&n bic hai pha thuéc thdi gian. Diém ky di t&i han twong ¥mg dac déng dirng t&i han
dwge ding d¢ phan loai dang cic dwdmg cdng hudng. Phu thude vio dd léch pha giira hai kich
déng, dwimg cdng hudng cé mdt hodc hai diém k¥ di t&i han, cdc diém niy bién mit khi cdn dd
manh vi dwdng cdng hwdng t4ch thinh hai nhanh - nhénh trén vi nhinh dwéi



