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IDENTIFYING THE RESONANCE CURVE OF
A SYSTEM SUBJECTED TO LINEAR AND
QUADRATIC PARAMETRIC EXCITATIONS

(case without damping)

NGUYEN VAN DINH - TRAN KIM CHI
Institute of Mechanics

Continuing our study in [3], in the present paper we examine the system
without damping A = 0. In this particular case, the original equations and the
associated ones are very simple and can easily be solved. The “exact” original
resonance curve Cg and the “exact” associated one C will be given. Thus, we are
able to compare two resonance curves and to “estimate” the indirect method pro-
posed. Although the system without damping seems to be trivial, the.“structure”
of its resonance curve is not so. On the other hand, the “difference” between Cg
and C is “greater”: in the non equivalence line, there are not only strange repre-
sentative points (which are ordinary points) but also strange dephases (at critical
representative points). Consequently, the indirect method presented in [3] must
be modified and developed.

§1. System under consideration - The direct method

In the case without damping, the system under consideration is described by
the differential equation
:'z':+w2:z::E{Az—7z3+2pzcos2wt+2qz2coswt} (1.1)
The asymptotic method [1] leads to the averaged differential equations

= - i
= ﬂfo = ﬂ{psin%’ + —qasine},
g —ea —sa{(A 3 2) " 20 + 3 0} :
al = —go = — - —a cos —qacosf ;.
2w ° 7 20 4 g g
and stationary oscillations are determined by the “original” equations:
1
fo = psin20 + —qasinf =0,
. (1.3)

3 3
gdo = (A — %az) + pcos 26 + Eqacosﬂ = (.
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Solving (1.3) we obtain

3 3
0=0,=0, along A= T'Yaz — g — Eqa, (1.4)
‘ .3 3
§ == m, along = %az -p+ 2qa, (1.5)
—qa 3 a?
0 = 485 = ﬂ:arccos(jqp—), along A= . q (1.6)
2
under restriction g’ & dg? = 165 . (1.7)
q

Thus, in the (semi-upper) plane R(A;a? > 0), the “original” resonance curve Cy
consists of three branches

- the left-half “parabola” P; : (1.4) with 6, = 0,
- the right-half “parabola” P, : (1.5) with § = =,
- the segment J;J, of the line (1. 6), respectively bounded below and above

by Ji(A = p;a® = 0) and Jo(A = 7411 + 5p;a’ = 4af) with two dephases
+fs = :tarccos(_—‘m).
4p az

In Fig.1, the resonance curve ] / N //-é
(heavy line) is plotted for v = 0.04, 74 /
p=0.01, ¢ = 0.03. | /

Note that J; Jo intersects the right E 5
half parabola P, at two points: J; and I / "
IL(A, = 3—}(13 + 2p;a® = af); the gar

latter corresponds to three dephases

. 7=0.
(7r, :EZ%) Also note that the line a? = <
a? (i.e. the non equivalence line T =
4p® — g%a* = 0) passes through I3 and - 0.00+- =y SR 1
1ntersects the left-half para.bola Piat o ka7
. .
Il(A—-———a —4p;a® =a ) . Fig. 1
§2. The indirect method - The associated resonance curve
As in [3] we use the transformation:
f = (2pcosb + ga) fo — 2psinb - go, (2.1)
g = 2psinf - fo + (2pcosf — ga)go = 0, )
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whose matrix is

_ | 2pcosé + qa —2psind
{T‘} - { 2psinf 2pcosf —ga | ° (2.2)

The determinant T = 4p% — ¢%?a? depends only on a. The associated equations
are.

f=Asind=0, g=Hcos§—K =0, (2.3)
where
e - (3= 549 b0} - Lo
- {2p[p+ (A . ?%az)] " gq?az} - %(3T +4pX), (2.4)
B = qa(A WS« . 2p) = gk

Recall that T = 0 is the non equivalence line.
The associated equations (2.3) can also be solved directly:
1/ For A # 0 (out off the line A = 0 i.e. the line (2.3)), we obtain:
- either § = 6, = 0 along

3
H-K=2(X+3p+ 5qa)(2p —ga) =0, (2.5)

i.e. along the left-half parabola

3 3 3
P1:X+3p+§qa=A——z—;1a2+p+§qa=0, (2.6)
and along the non equivalence line
2p—qa=0 (ie a®=d?), (2.7)
except I,
-or § = 0, = m along
g ‘
H + K = 2(2p + qa) (X +3p— —Z-qa) = 0, (2.8)
i.e. along the right-half parabola
3 3 3
Pz:X+3p—§qa=A—T"a2+p—§qa=o, (2.9)

except I and J,
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2/ For A =0, H # 0 we obtain

K —4
¥ = fly= :ta.rccos—ﬁ = :};arccos( 4;‘1), (2.10)

with restriction ga < 4p or a*® < 4a, i.e. § = 03 along the segment J;J, except
I

3/ For A =0, H =0 i.e. at I, (the intersection point of two lines A = 0 and
H = 0) the dephase @ is arbitrary.

Thus, the associated resonance curve C differs enough from the original one
Co: 4 )
- Except I, and I,, all other points of the non equivalence line T = 0 are

strange representative points.

2
- At I,, except three values (7r,:i:—§7£), all other values of # (which is arbi-
trary!) are strange dephases.

Using the procedure in {2], we obtain some more useful remarks.

Three characteristic determinants are:

A O 1
D=4 g = AH = _Z(T +4pX) (3T + 4pX),
o of_
Di=|p g l =, (2.11)
A O 1
The critical region D = 0 consists of two lines
A =0 (the line (2.3))and H =0 (2.12)
and the compatible ensemble D = D; = D, = 0 is the line
A =0 (the line (2.3)). (2.13)

Tile associated frequency - amplitude relationship is
i
W(A,a?) = D — D? = A*(K®* - H?*) = Az{q?azx2 - Z(3T + 4pX)2} =
2 2 _ B2y 2 9.2 _
= =i {(4p — ¢%a?)X? + 6pXT + T?} =
9
= —TA?(X? +6pX + ZT) = (2.14)
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The factor T corresponds to the non equivalence line T' = 0; it is an ordinary
branch of the associated resonance curve (except I3).

The last factor of W(A,a?) can be factorized as:

9 3 3
X% +6pX + ZT = (X-I— 3p + Eqa) (X-I—Qp = Eqa) (2.15)

and corresponds to the “parabola” P = P, U P, with two left and right half
parabolas Py, P, (except I; and J3). The parabola P is also an ordinary branch
of the associated resonance curve C.

The double factor A% corresponds to the compatible line (2.3). Along this
compatible line, we must verify the trigonometrical condition H?* < K? which
leads to the segment J;J,. Thus J,J; forms the critical part C, of the associated
resonance curve C. Along J,J; we have two critical dephases 103, except at I3,
the critical dephase is arbitrary.

§3. The indirect method - Elimination of strange elements

The results obtained in §1, §2 show that we have to demonstrate two following
propositions:

1 - Except I;, in the non equivalence line T = 0 all (other) ordinary rep-
resentative points of the associated resonance curve C are strange representative
ones.

2 - At I, except (7r, :I:g;—), all (other) dephases are strange critical dephases.

~ The method of artificial dephase can be applied again with necessary modi-
fications: since D; = 0, another definition of the artificial dephase is chosen; the
calculus at limit depends on trajectories along which we approach I5.

First, let us examine ordinary representitative points in the non equivalence
line. By I(A.,a?) and 0. we denote the point of interest and its (associated)
dephase. At I, we have

D, = D{A.,a2) = —4p* X2 < 0, (3.1)
D D £ 3
sinf, = (51*)‘ =0, cosf, = (—bz>. = q—;;— =1 ie. #. =0. (3.2)

By N(A,a?) we denote an arbitrary point in the neighbourhood of I but out off
T =0. At N we have T # 0 and - by continuity - D < 0.

We introduce an angle 8 called artificial dephase, defined as

e [ D2
, sinf =+ 1—5—';’, (3.3)
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(the sign before radical is arbitrary chosen). Obviously, when N tends to I, the
artificial dephase introduced tends to 6, = 0.

At N, since T # 0, from (2.1), we can express (fo,g0) as combinations of
(f,9): "

= k- b s
Jo(A,a,0) = = (2pcos8 — qa)f + 2psinf-g ¢,
0 B T{ } ~ (3.4)

1 = -
go(A,a,8) = f{ —2psinf - f + (2pcos + qa)g}.

Using (2.1), (3.3), (2.11), (2.4), regarding that HD, — KD = 0, we can transform
(3.4) as:

o 1 . = (2pAK — gaAH)Asind
fo(A,a,0) TD(2P 2 —gaD)Asind =T
_ A(2pK — qaH)sin0 _ _3ga Asiné 4.
- TH B T B -
= oz .. 7 2pA D3\
go(A,a,0) = T{ 2psin 6 Asmﬂ} === (1 55) =
2pA-W  —2pA
~"Tpr T D? Wo(A,d?), (3.6)
where , = .
Wo(A,az) = ___L%‘_’l_)_ = —A? (X2 + 6pX + gT) (37)

At limit (A — A,, a — a., § = A,), since I # I, we have

ga —qa, =2p, A— A.#0, H— H, #0,
D — D, #0, Wy(A,a?) = Wy(A,,d?), (3.8)

fO(Aaa)a) = fO(A*a a*,a*)a gO(A,a'aa) — gO(A*7 a,,,ﬂ,.).

Therefore

il (3.9)
D3
I (A*,af) and 0, form an element of the original resonance curve Cj if and only
if fo(As,a.,0.) and go(A.,a.,0.) simultaneously vanish. From (3.9), it follows
that the required conditions lead to Wy(A.,a?) = 0 i.e. I(A,,a?) must be an
intersection point of the non-equivalence line T = 0 and the curve Wy(A,a?) =0

(the point I;).

{ fO(A*aa*aa*) = 0,

go(As,a.,0.) = —2p==Woy(A.,d?),

’ 3 .
Finally, we examine the critical point I (Az = —gaf + 2p; af). In this case,

the limit value of @ and, consequently, those of fo(A,a,8), g(A,a,8) depend on
the trajectory along which N tends to I,.
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Let us denote: T - the trajectory of interest; a? = a%(A) - the equation of T’

da?
= S e - the slope of T' at I,.

Considering T, X, A, H, K as functions of A (a? replaced by e%(A)) we can
easily obtain their developments in the neighbourhood of I5:

T =4p® — ¢°a® = —kg*(A — A)),
X=A- -3:;1112 —2p= 3—}(kx—k)(A - A,),
i 1
A=—2(T+4pX) = —5(¢" + 3p) (ks — K)(A - AL), (3.10)
1 3 .
H = (3T +4pX) = 5(‘12 +9p) (kx — k)(A - A),
3 3 :

K = gaX = qa,,—}(kx kA=A = —gf(kx ~ WA —AL),
where kx = ki, ka, kg are slopes at I of the lines X =0, K =0, A =0, H =0,
respectively:

4 4p 4p
kx =kxg=—, ka=———, ky=—7r——- 3.11
XT3y AT w3 T 3@ + ) e
Following developments are also useful
. .
D = AH = ——(q* + 37p) (¢ + ) (ka — k) (ki — k) (A - A.)%,
3vp
g (3.12)
X+3p+ ~2-qa~=6p+...,
3(2yp + ¢* '
X +3p- 3qa = BT 4y, —iy(a - ),
where kp, is the slope of the right half parabola P, at I
_-__8_1’____ , (3,13)

T ;
P27 3{27p + ¢?)

By 05 we denote the limit of 8 : §; = 1im@# (N approaches I, along the trajectory
I' with slope k at I;). We have

P kx — k

LR ey L (3.14)

cosfx = limcosd =
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Particularly:
if k=0 cosfp=1 ie. 8o =0 (k=0 is the slope of T =0),
if k=kp, cosfr,, =—1 ie 0Ok, =m =0,
USRI Y ~5 e Oy, =k
Returning to (2.5), using the development of A and H, we obtain at limit

q2+3'1p_k,1—k.
@2+ kg —k

fo(A2,a.,0k) = +9psin b - (3.15)

It follows that fo(Az,as,0k) vanishes if either §x = 6o = 0 or 0 = 6, = 7 or

R 2 - " )
k=kyie O =0, = :i:?w. At limit, the expression (3.6) can be written as:

2p(X +3p+ 2qa 3
go(Az,a.,0) = ( o 29 )A(X+ 3p= Eqa)
—2p(q* + 3vp) (299 + ¢%) |
= kx — k)(kp, — k).
(42 +vp)2 (kg — k)2 A (3.16)

, 2
Evidently go(As3, a,0.) vanishes if either k = ky ie. 05 = 0k, = 1—31 or k = kp,

ie. 0= 0kP2 =

2
We obtain thus the known result: at I; only § = 7 and 8 = :i:?r are “original”

dephases, all other associated dephases are strange.
Remark 1. From the demonstration we can conclude that three original dephases

27 ,
at I (0 = :I:—3—) coincide with the limit values of the associated dephases if we
approach I; by moving along associated branches passing through I.

Remark 2. The existence of the (real) artificial dephase # requires %l < 1 which

is equivalent to

TN TP Y TN L | PRt

Thus, the point N must be chosen in shaded domain I, II, IIl shown in Fig.2.

Remark 3. Starting from (I, III), N tends to I, the slope k € (~o00,0) U [k3, +00)
and the graph of cosfy is of the form shown in Fig.3. Thus, for arbitrary given
associated dephases 0, there always exists corresponding trajectories I' with the
slope k at I so that lim8 = 6, = 40,.
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1
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7777 : / ////////777 g N
A Rl e s 2
:\\‘ 20/3(¥p+92)
Fig. 2 Fig. 3

Conclusion

We have identified the resonance curve of a quasi-linear system subjected to
linear and quadratic pasrametric excitations in the case without damping. The
direct and indirect methods. have been used. Although the non-equivalence line
contains critical representative point at which strange dephases exist, the original

resonance can also be obtained from the associated one.
This publication is completed with financial support from The Council for

Natural Sciences of Vietnam.
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LAP PUONG CONG HUONG CUA HE CHIU HAI KfCH PONG
THONG SO BAC NHAT VA BAC HAI (TRUONG HOP KHONG CAN)

Xét hé da khdo sat & [3] trong trudmg hop khéng cdn, h = 0. Dudng khéng
twong dwong chira diém t&i han do cic pha lién hop 13 bat ky. Phwong phép pha
nhéan tao dwoc ip dung dé loai cic pha téi han la.
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