Generalized continuum overall modelling of periodic composite structures

Duy Khanh Trinh, Samuel Forest


Classical homogenization methods fail to reproduce the overall response of composite structures when macroscopic strain gradients become significant. Generalized continuum models like Cosserat, strain gradient and micromorphic media, can be used to enhance the overall description of heterogeneous materials when the hypothesis of scale separation is not fulfilled. We show in the present work how the higher order elasticity moduli can be identified from suitable loading conditions applied to the unit cell of a periodic composite. The obtained homogeneous substitution generalized continuum is used then to predict the response of a composite structure subjected to various loading conditions. Reference finite element computations are performed on the structure taking all the heterogeneities into account. The overall substitution medium is shown to provide improved predictions compared to standard homogenization. In particular the additional boundary conditions required by generalized continua makes it possible to better represent the clamping conditions on the real structure.


Homogenization; strain gradient effects; periodic micro-structures; numerical prediction

Full Text:


DOI: Display counter: Abstract : 99 views. PDF : 80 views.


  • There are currently no refbacks.

Copyright (c) 2012 Vietnam Academy of Science and Technology


Editorial Office of Vietnam Journal of Mechanics

3rd Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
Tel: (+84) 24 3791 7103