Structural parameter identification of a bolted connection embedded with a piezoelectric interface

Author affiliations

Authors

DOI:

https://doi.org/10.15625/0866-7136/14806

Keywords:

bolted connection, structural identification, piezoelectric interface, impedance method, predictive modelling, model-updating

Abstract

As the impedance-based technique has been commonly accepted as an innovative structural health monitoring tool, structural identification of a piezoelectric-driven system is of significant interest for damage identification and quantification. This study presents a predictive modelling strategy, which combines the finite element (FE) method with a model-updating approach, for estimating the structural parameters of a piezoelectric interface-bolted connection system. Firstly, the basic operating principle of the piezoelectric-based smart interface is introduced. Secondly, a bolted connection is selected as a host structure to conduct real impedance measurement via the smart interface. Thirdly, a numerical FE model corresponding to the experimental model is established by using a FE program, COMSOL Multiphysics. A sensitivity-based model updating algorithm is adopted to fine-tune the FE model. Finally, structural parameters of the FE model are determined as the numerical impedance signatures match with the measured ones at the same high-frequency band with identical patterns. This study is expected to open an alternative approach for determining unknown structural parameters of the piezoelectric interface-bolted joint system in practice.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

C. Liang, F. P. Sun, and C. A. Rogers. Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures, 8, (4), (1997), pp. 335–343. https://doi.org/10.1177/1045389x9700800406. https://doi.org/10.1177/1045389x9700800406.">

G. Park, H. Sohn, C. R. Farrar, and D. J. Inman. Overview of piezoelectric impedance-based health monitoring and path forward. Shock and Vibration Digest, 35, (6), (2003), pp. 451–464. https://doi.org/10.1177/05831024030356001. https://doi.org/10.1177/05831024030356001.">

T.-C. Huynh, N.-L. Dang, and J.-T. Kim. Advances and challenges in impedance-based structural health monitoring. Structural Monitoring and Maintenance, 4, (4), (2017), pp. 301–329.

J. Zhu, Y. Wang, and X. Qing. A real-time electromechanical impedance-based active monitoring for composite patch bonded repair structure. Composite Structures, 212, (2019), pp. 513–523. https://doi.org/10.1016/j.compstruct.2019.01.035. https://doi.org/10.1016/j.compstruct.2019.01.035.">

S. Ritdumrongkul, M. Abe, Y. Fujino, and T. Miyashita. Quantitative health monitoring of bolted joints using a piezoceramic actuator–sensor. Smart Materials and Structures, 13, (1), (2003). https://doi.org/10.1117/12.482381. https://doi.org/10.1117/12.482381.">

J. Min, S. Park, C.-B. Yun, C.-G. Lee, and C. Lee. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity. Engineering Structures, 39, (2012), pp. 210–220. https://doi.org/10.1016/j.engstruct.2012.01.012. https://doi.org/10.1016/j.engstruct.2012.01.012.">

T.-C. Nguyen, T.-C. Huynh, J.-H. Yi, and J.-T. Kim. Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses. Wind and Structures, 24, (4), (2017), pp. 385–403. https://doi.org/10.12989/was.2017.24.4.385. https://doi.org/10.12989/was.2017.24.4.385.">

T.-C. Huynh, D.-D. Ho, N.-L. Dang, and J.-T. Kim. Sensitivity of piezoelectric-based smart interfaces to structural damage in bolted connections. Sensors, 19, (17), (2019). https://doi.org/10.3390/s19173670. https://doi.org/10.3390/s19173670.">

K.-D. Nguyen and J.-T. Kim. Smart PZT-interface for wireless impedance-based prestress loss monitoring in tendon-anchorage connection. Smart Structures and Systems, 9, (6), (2012), pp. 489–504. https://doi.org/10.12989/sss.2012.9.6.489. https://doi.org/10.12989/sss.2012.9.6.489.">

C. K. Soh, K. K. H. Tseng, S. Bhalla, and A. Gupta. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures, 9, (4), (2000). https://doi.org/10.1088/0964-1726/9/4/317. https://doi.org/10.1088/0964-1726/9/4/317.">

J.-T. Kim, J.-H. Park, D.-S. Hong, and W.-S. Park. Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches. Engineering Structures, 32, (1), (2010), pp. 115–128. https://doi.org/10.1016/j.engstruct.2009.08.021. https://doi.org/10.1016/j.engstruct.2009.08.021.">

J.-T. Kim, J.-H. Park, D.-S. Hong, and D.-D. Ho. Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections. Smart Structures and Systems, 7, (5), (2011), pp. 393–416. https://doi.org/10.12989/sss.2011.7.5.393. https://doi.org/10.12989/sss.2011.7.5.393.">

R. Perera, A. Pérez, M. Garcıa-Diéguez, and J. L. Zapico-Valle. Active wireless system for structural health monitoring applications. Sensors, 17, (12), (2017). https://doi.org/10.3390/s17122880. https://doi.org/10.3390/s17122880.">

G. Song, H. Gu, and Y.-L. Mo. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review. Smart Materials and Structures, 17, (3), (2008). https://doi.org/10.1088/0964-1726/17/3/033001. https://doi.org/10.1088/0964-1726/17/3/033001.">

W. Li, T. Liu, D. Zou, J. Wang, and T.-H. Yi. PZT based smart corrosion coupon using electromechanical impedance. Mechanical Systems and Signal Processing, 129, (2019), pp. 455–469. https://doi.org/10.1016/j.ymssp.2019.04.049. https://doi.org/10.1016/j.ymssp.2019.04.049.">

T.-C. Huynh, S.-Y. Lee, N.-L. Dang, and J.-T. Kim. Sensing region characteristics of smart piezoelectric interface for damage monitoring in plate-like structures. Sensors, 19, (6), (2019). https://doi.org/10.3390/s19061377. https://doi.org/10.3390/s19061377.">

T.-C. Huynh and J.-T. Kim. Impedance-based cable force monitoring in tendon-anchorage using portable pzt-interface technique. Mathematical Problems in Engineering, 2014, (2014). https://doi.org/10.1155/2014/784731. https://doi.org/10.1155/2014/784731.">

J.-Y. Ryu, T.-C. Huynh, and J.-T. Kim. Tension force estimation in axially loaded members using wearable piezoelectric interface technique. Sensors, 19, (1), (2019). https://doi.org/10.3390/s19010047. https://doi.org/10.3390/s19010047.">

N.-L. Dang, T.-C. Huynh, Q.-Q. Pham, S.-Y. Lee, and J.-T. Kim. Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis. Structural Control and Health Monitoring, (2020). https://doi.org/10.1002/stc.2547. https://doi.org/10.1002/stc.2547.">

N.-L. Dang, T.-C. Huynh, and J.-T. Kim. Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method—Feasibility study. Sensors, 19, (5), (2019). https://doi.org/10.3390/s19051054. https://doi.org/10.3390/s19051054.">

R. Tawie, H. B. Park, J. Baek, andW. S. Na. Damage detection performance of the electromechanical impedance (EMI) technique with various attachment methods on glass fibre composite plates. Sensors, 19, (5), (2019). https://doi.org/10.3390/s19051000. https://doi.org/10.3390/s19051000.">

T.-C. Huynh and J.-T. Kim. Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique. Smart Structures and Systems, 20, (2), (2017), pp. 181–195. https://doi.org/10.12989/sss.2017.20.2.181. https://doi.org/10.12989/sss.2017.20.2.181.">

M. Friswell and J. E. Mottershead. Finite element model updating in structural dynamics. Boston: Kluwer Academic, (1995).

M. Link. Updating of analytical models—review of numerical procedures and application aspects. In Structural Dynamics Forum SD2000, Research Studies Press, Baldock, UK, (1999), pp. 193–223.

B. Jaishi and W.-X. Ren. Structural finite element model updating using ambient vibration test results. Journal of Structural Engineering, 131, (4), (2005), pp. 617–628. https://doi.org/10.1061/(asce)0733-9445(2005)131:4(617). https://doi.org/10.1061/(asce)0733-9445(2005)131:4(617).">

A. De Sortis and P. Paoliani. Statistical analysis and structural identification in concrete dam monitoring. Engineering structures, 29, (1), (2007), pp. 110–120. https://doi.org/10.1016/j.engstruct.2006.04.022. https://doi.org/10.1016/j.engstruct.2006.04.022.">

F. N. Catbas, S. K. Ciloglu, O. Z. H. A. N. Hasancebi, K. Grimmelsman, and A. E. Aktan. Limitations in structural identification of large constructed structures. Journal of Structural Engineering, 133, (8), (2007), pp. 1051–1066. https://doi.org/10.1061/(asce)0733-9445(2007)133:8(1051). https://doi.org/10.1061/(asce)0733-9445(2007)133:8(1051).">

R. Pasquier and I. F. C. Smith. Iterative structural identification framework for evaluation of existing structures. Engineering Structures, 106, (2016), pp. 179–194. https://doi.org/10.1016/j.engstruct.2015.09.039. https://doi.org/10.1016/j.engstruct.2015.09.039.">

T.-C. Huynh, J.-H. Park, and J.-T. Kim. Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring. Measurement, 88, (2016), pp. 385–401. https://doi.org/10.1016/j.measurement.2016.03.032. https://doi.org/10.1016/j.measurement.2016.03.032.">

J. R. Wu and Q. S. Li. Finite element model updating for a high-rise structure based on ambient vibration measurements. Engineering Structures, 26, (7), (2004), pp. 979–990. https://doi.org/10.1016/j.engstruct.2004.03.002. https://doi.org/10.1016/j.engstruct.2004.03.002.">

D.-D. Ho, J.-T. Kim, N. Stubbs, and W.-S. Park. Prestress-force estimation in PSC girder using modal parameters and system identification. Advances in Structural Engineering, 15, (6), (2012), pp. 997–1012. https://doi.org/10.1260/1369-4332.15.6.997. https://doi.org/10.1260/1369-4332.15.6.997.">

M. Sanayei, B. Arya, E. M. Santini, and S. Wadia-Fascetti. Significance of modeling error in structural parameter estimation. Computer-Aided Civil and Infrastructure Engineering, 16, (1), (2001), pp. 12–27. https://doi.org/10.1111/0885-9507.00210. https://doi.org/10.1111/0885-9507.00210.">

M. Ge and E. M. Lui. Structural damage identification using system dynamic properties. Computers & Structures, 83, (27), (2005), pp. 2185–2196. https://doi.org/10.1016/j.compstruc.2005.05.002. https://doi.org/10.1016/j.compstruc.2005.05.002.">

E. Aktan, N. C¸ atbas¸, A. T¨ urer, and Z. Zhang. Structural identification: Analytical aspects. Journal of Structural Engineering, 124, (7), (1998), pp. 817–829. https://doi.org/10.1061/(asce)0733-9445(1998)124:7(817). https://doi.org/10.1061/(asce)0733-9445(1998)124:7(817).">

H. W. Shih, D. P. Thambiratnam, and T. H. T. Chan. Vibration based structural damage detection in flexural members using multi-criteria approach. Journal of Sound and Vibration, 323, (3-5), (2009), pp. 645–661. https://doi.org/10.1016/j.jsv.2009.01.019. https://doi.org/10.1016/j.jsv.2009.01.019.">

N. Stubbs and J.-T. Kim. Damage localization in structures without baseline modal parameters. AIAA Journal, 34, (8), (1996), pp. 1644–1649. https://doi.org/10.2514/3.13284. https://doi.org/10.2514/3.13284.">

T.-C. Huynh, S.-Y. Lee, N.-L. Dang, and J.-T. Kim. Vibration-based structural identification of caisson-foundation system via in situ measurement and simplified model. Structural Control and Health Monitoring, 26, (3), (2019). https://doi.org/10.1002/stc.2315. https://doi.org/10.1002/stc.2315.">

G. Park,H. H. Cudney, and D. J. Inman. Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake Engineering & Structural Dynamics, 30, (10), (2001), pp. 1463–1474. https://doi.org/10.1002/eqe.72. https://doi.org/10.1002/eqe.72.">

J. Min, S. Park, and C.-B. Yun. Impedance-based structural health monitoring using neural networks for autonomous frequency range selection. Smart Materials and Structures, 19, (12), (2010). https://doi.org/10.1088/0964-1726/19/12/125011. https://doi.org/10.1088/0964-1726/19/12/125011.">

B. Wang, L. Huo, D. Chen, W. Li, and G. Song. Impedance-based pre-stress monitoring of rock bolts using a piezoceramic-based smart washer—A feasibility study. Sensors, 17, (2), (2017). https://doi.org/10.3390/s17020250. https://doi.org/10.3390/s17020250.">

J.-T. Kim, K.-D. Nguyen, and J.-H. Park. Wireless impedance sensor node and interface washer for damage monitoring in structural connections. Advances in Structural Engineering, 15, (6), (2012), pp. 871–885. https://doi.org/10.1260/1369-4332.15.6.871. https://doi.org/10.1260/1369-4332.15.6.871.">

K.-D. Nguyen, S.-Y. Lee, P.-Y. Lee, and J.-T. Kim. Wireless SHM for bolted connections via multiple PZT-interfaces and Imote2-platformed impedance sensor node. In Proceedings of the 6th International Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST2011), Dalian, China, (2011), pp. 25–26.

J.-Y. Ryu, T.-C. Huynh, and J.-T. Kim. Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection. Structural Monitoring Maintenance, 4, (3), (2017), pp. 237–253. https://doi.org/10.12989/smm.2017.4.3.237. https://doi.org/10.12989/smm.2017.4.3.237.">

T.-C. Huynh, N.-L. Dang, and J.-T. Kim. Preload monitoring in bolted connection using piezoelectric-based smart interface. Sensors, 18, (9), (2018). https://doi.org/10.3390/s18092766. https://doi.org/10.3390/s18092766.">

T.-C. Huynh and J.-T. Kim. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage. Smart Materials and Structures, 26, (12), (2017). https://doi.org/10.1088/1361-665x/aa931b. https://doi.org/10.1088/1361-665x/aa931b.">

C. W. Ong, Y. Yang, Y. T. Wong, S. Bhalla, Y. Lu, and C. K. Soh. Effects of adhesive on the electromechanical response of a piezoceramic-transducer-coupled smart system. In Smart Materials, Structures, and Systems, International Society for Optics and Photonics, Vol. 5062, (2003), pp. 241–247.

M. Gresil, L. Yu, V. Giurgiutiu, and M. Sutton. Predictive modeling of electromechanical impedance spectroscopy for composite materials. Structural Health Monitoring, 11, (6), (2012), pp. 671–683. https://doi.org/10.1177/1475921712451954. https://doi.org/10.1177/1475921712451954.">

Downloads

Published

29-06-2020

How to Cite

[1]
T.-C. Huynh, Structural parameter identification of a bolted connection embedded with a piezoelectric interface, Vietnam J. Mech. 42 (2020) 173–188. DOI: https://doi.org/10.15625/0866-7136/14806.

Issue

Section

Research Article

Most read articles by the same author(s)