Estimates for the elastic moduli of 2D aggregate of hexagonal-shape orthorhombic crystals with in-plane random crystalline orientations

Vuong Thi My Hanh, Le Hoai Chau, Vu Lam Dong, Pham Duc Chinh
Author affiliations

Authors

  • Vuong Thi My Hanh Institute of Mechanics, VAST, Hanoi, Vietnam
  • Le Hoai Chau Institute of Mechanics and Environmental Engineering, Hanoi, Vietnam
  • Vu Lam Dong Institute of Mechanics, VAST, Hanoi, Vietnam
  • Pham Duc Chinh Institute of Mechanics, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/13183

Keywords:

effective elastic moduli, random cell polycrystal, 2D orthorhombic crystal

Abstract

Numerical finite element simulations on the homogenization problem for large samples of particular 2D hexagonal-shape-geometry random orientation aggregates from the base crystals of orthorhombic symmetry have been performed. At sufficiently large random-aggregate samples, the scatter intervals of the macroscopic 2D bulk and shear elastic moduli converge toward the Voigt-Reuss-Hill bounds, and then our recently constructed theoretical estimates, which have been specified for the aggregates.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

R. Hill. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society. Section A, 65, (5), (1952), pp. 349–354. https://doi.org/10.1088/0370-1298/65/5/307. https://doi.org/10.1088/0370-1298/65/5/307.">

Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behavior of polycrystals. Journal of the Mechanics and Physics of Solids, 10, (4), (1962), pp. 343–352. https://doi.org/10.1016/0022-5096(62)90005-4. https://doi.org/10.1016/0022-5096(62)90005-4.">

J. P. Watt. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry. Journal of Applied Physics, 50, (10), (1979), pp. 6290–6295. https://doi.org/10.1063/1.325768. https://doi.org/10.1063/1.325768.">

P. D. Chinh. Elastic moduli of perfectly random polycrystalline aggregates. Philosophical Magazine A, 76, (1), (1997), pp. 31–44. https://doi.org/10.1080/01418619708209960. https://doi.org/10.1080/01418619708209960.">

G. W. Milton. The theory of composites. Cambridge University Press, UK, (2001).

J. G. Berryman. Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of the Mechanics and Physics of Solids, 53, (10), (2005), pp. 2141–2173. https://doi.org/10.1016/j.jmps.2005.05.004. https://doi.org/10.1016/j.jmps.2005.05.004.">

P. D. Chinh. On the scatter ranges for the elastic moduli of random aggregates of general anisotropic crystals. Philosophical Magazine, 91, (4), (2011), pp. 609–627. https://doi.org/10.1080/14786435.2010.528459. https://doi.org/10.1080/14786435.2010.528459.">

P. D. Chinh. Bounds on the elastic moduli of statistically isotropic multicomponent materials and random cell polycrystals. International Journal of Solids and Structures, 49, (18), (2012), pp. 2646–2659. https://doi.org/10.1016/j.ijsolstr.2012.05.021. https://doi.org/10.1016/j.ijsolstr.2012.05.021.">

V. T. M. Hanh, P. D. Chinh, and V. L. Dong. Improved estimates for the effective elastic bulk modulus of random tetragonal crystal aggregates. Vietnam Journal of Mechanics, 38, (3), (2016), pp. 181–192. https://doi.org/10.15625/0866-7136/38/3/6055. https://doi.org/10.15625/0866-7136/38/3/6055.">

D. C. Pham, C. H. Le, and T. M. H. Vuong. Estimates for the elastic moduli of d-dimensional random cell polycrystals. Acta Mechanica, 227, (10), (2016), pp. 2881–2897. https://doi.org/10.1007/s00707-016-1653-y. https://doi.org/10.1007/s00707-016-1653-y.">

G. Allaire. Shape optimization by the homogenization method. Springer-Verlag, New York, (2012).

M. P. Bendsoe and O. Sigmund. Topology optimization: theory, methods and applications. Springer Science & Business Media, (2003).

C. H. Le. Developments in topology and shape optimization. PhD thesis, University of Illinois at Urbana-Champaign, (2010).

S. J. Hollister and N. Kikuchi. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Computational Mechanics, 10, (2), (1992), pp. 73–95. https://doi.org/10.1007/bf00369853. https://doi.org/10.1007/bf00369853.">

P. D. Chinh. Bounds for the effective elastic properties of completely random planar polycrystals. Journal of Elasticity, 54, (3), (1999), pp. 229–251. https://doi.org/10.1023/A:1007623720169. https://doi.org/10.1023/A:1007623720169.">

P. D. Chinh. Bounds on the elastic moduli of completely random two-dimensional polycrystals. Meccanica, 37, (6), (2002), pp. 503–514. https://doi.org/10.1023/A:1020943815452. https://doi.org/10.1023/A:1020943815452.">

D. C. Pham. Revised bounds on the elastic moduli of two-dimensional random polycrystals. Journal of Elasticity, 85, (1), (2006), pp. 1–20. https://doi.org/10.1007/s10659-006-9065-1. https://doi.org/10.1007/s10659-006-9065-1.">

H. H. Landolt and R. Börnstein. Group III: Crystal and solid state physics, Vol. 11. Springer-Verlarg, (1979).

Downloads

Published

25-06-2019

How to Cite

[1]
V. T. M. Hanh, L. H. Chau, V. L. Dong and P. D. Chinh, Estimates for the elastic moduli of 2D aggregate of hexagonal-shape orthorhombic crystals with in-plane random crystalline orientations, Vietnam J. Mech. 41 (2019) 171–177. DOI: https://doi.org/10.15625/0866-7136/13183.

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 > >>