An enhanced nodal gradient finite element for non-linear heat transfer analysis

Minh Ngoc Nguyen, Tich Thien Truong, Tinh Quoc Bui
Author affiliations

Authors

  • Minh Ngoc Nguyen Ho Chi Minh city University of Technology, Vietnam
  • Tich Thien Truong Ho Chi Minh city University of Technology, Vietnam
  • Tinh Quoc Bui Tokyo Institute of Technology, Japan

DOI:

https://doi.org/10.15625/0866-7136/12977

Keywords:

consecutive-interpolation procedure, heat transfer, nonlinear, Newton-Raphson

Abstract

The present work is devoted to the analysis of non-linear heat transfer problems using the recent development of consective-interpolation procedure. Approximation of temperature is enhanced by taking into account both the nodal values and their averaged nodal gradients, which results in an improved finite element model. The novel formulation possesses many desirable properties including higher accuracy and higher-order continuity, without any change of the total number of degrees of freedom. The non-linear heat transfer problems equation is linearized and iteratively solved by the Newton-Raphson scheme. To show the accuracy and efficiency of the proposed method, several numerical examples are hence considered and analyzed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

H. C. Huang and A. S. Usmani. Finite element analysis for heat transfer: theory and software. Springer-Verlag, London, (1994).

L. C. Wrobel and C. A. Brebbia. Boundary element methods in heat transfer. Springer, (1992).

I. Simoes, N. Simoes, A. Tadeu, M. Reis, C. A. B. Vasconcellos, and W. J. Mansur. Experimental validation of a frequency domain BEM model to study 2D and 3D heat transfer by conduction. Engineering Analysis with Boundary Elements, 36, (11), (2012), pp. 1686–1698. https://doi.org/10.1016/j.enganabound.2012.05.007. https://doi.org/10.1016/j.enganabound.2012.05.007.">

I. V. Singh. A numerical solution of composite heat transfer problems using meshless method. International Journal of Heat and Mass Transfer, 47, (10-11), (2004), pp. 2123–2138. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.013. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.013.">

A. Khosravifard and M. R. Hematiyan. A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Engineering Analysis with Boundary Elements, 34, (1), (2010), pp. 30–40. https://doi.org/10.1016/j.enganabound.2009.07.008. https://doi.org/10.1016/j.enganabound.2009.07.008.">

X. Y. Cui, S. Z. Feng, and G. Y. Li. A cell-based smoothed radial point interpolation method (CS-RPIM) for heat transfer analysis. Engineering Analysis with Boundary Elements, 40, (2014), pp. 147–153. https://doi.org/10.1016/j.enganabound.2013.12.004. https://doi.org/10.1016/j.enganabound.2013.12.004.">

C. Zheng, S. C. Wu, X. H. Tang, and J. H. Zhang. A novel twice-interpolation finite element method for solid mechanics problems. Acta Mechanica Sinica, 26, (2), (2010), pp. 265–278.

T. Q. Bui, D. Q. Vo, C. Zhang, and D. D. Nguyen. A consecutive-interpolation quadrilateral element (CQ4): formulation and applications. Finite Elements in Analysis and Design, 84, (2014), pp. 14–31. https://doi.org/10.1016/j.finel.2014.02.004. https://doi.org/10.1016/j.finel.2014.02.004.">

M. N. Nguyen, T. Q. Bui, T. T. Truong, N. A. Trinh, I. V. Singh, T. Yu, and D. H. Doan. Enhanced nodal gradient 3D consecutive-interpolation tetrahedral element (CTH4) for heat transfer analysis. International Journal of Heat and Mass Transfer, 103, (2016), pp. 14–27. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.038. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.038.">

M. N. Nguyen, T. Q. Bui, T. T. Truong, S. Tanaka, and S. Hirose. Numerical analysis of 3-D solids and composite structures by an enhanced 8-node hexahedral element. Finite Elements in Analysis and Design, 131, (2017), pp. 1–16. https://doi.org/10.1016/j.finel.2017.04.002. https://doi.org/10.1016/j.finel.2017.04.002.">

S. Z. Feng, X. Y. Cui, A. M. Li, and G. Z. Xie. A face-based smoothed point interpolation method (FS-PIM) for analysis of nonlinear heat conduction in multi-material bodies. International Journal of Thermal Sciences, 100, (2016), pp. 430–437. https://doi.org/10.1016/j.ijthermalsci.2015.10.017. https://doi.org/10.1016/j.ijthermalsci.2015.10.017.">

K. Yang, W.-Z. Feng, J. Wang, and X.-w. Gao. RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity. Engineering Analysis with Boundary Elements, 87, (2018), pp. 1–8. https://doi.org/10.1016/j.enganabound.2017.11.001. https://doi.org/10.1016/j.enganabound.2017.11.001.">

L. H. Liu and J. Y. Tan. Meshless local Petrov–Galerkin approach for coupled radiative and conductive heat transfer. International Journal of Thermal Sciences, 46, (7), (2007), pp. 672–681. https://doi.org/10.1016/j.ijthermalsci.2006.09.005. https://doi.org/10.1016/j.ijthermalsci.2006.09.005.">

Y. Zhang, H.-L. Yi, and H.-P. Tan. Natural element method analysis for coupled radiative and conductive heat transfer in semitransparent medium with irregular geometries. International Journal of Thermal Sciences, 76, (2014), pp. 30–42. https://doi.org/10.1016/j.ijthermalsci.2013.08.013. https://doi.org/10.1016/j.ijthermalsci.2013.08.013.">

M. N. Nguyen, T. Q. Bui, T. Yu, and S. Hirose. Isogeometric analysis for unsaturated flow problems. Computers and Geotechnics, 62, (2014), pp. 257–267. https://doi.org/10.1016/j.compgeo.2014.08.003. https://doi.org/10.1016/j.compgeo.2014.08.003.">

N. T. Phong, N. T. Trung, and N. P. Vinh. About an approximate method to solve the static boundary value problems in the isotropic hardening elastic-plastic solid. Vietnam Journal of Mechanics, 28, (2), (2006), pp. 74–82. https://doi.org/10.15625/0866-7136/28/2/5522. https://doi.org/10.15625/0866-7136/28/2/5522.">

K. D. Nguyen, M. N. Nguyen, H. V. Cong, and H. Nguyen-Xuan. Isogeometric analysis of linear isotropic and kinematic hardening elastoplasticity. Vietnam Journal of Mechanics, 39, (1), (2017), pp. 51–68. https://doi.org/10.15625/0866-7136/7817. https://doi.org/10.15625/0866-7136/7817.">

E. H. Buyco and F. E. Davis. Specific heat of aluminum from zero to its melting temperature and beyond. equation for representation of the specific heat of solids. Journal of Chemical and Engineering Data, 15, (4), (1970), pp. 518–523. https://doi.org/10.1021/je60047a035. https://doi.org/10.1021/je60047a035.">

C. Y. Ho, R. W. Powell, and P. E. Liley. Thermal conductivity of the elements: a comprehensive review. Journal of Physical and Chemical Reference Data, 3, (1), (1974), pp. 1–810.

T. Q. Bui, X. Zhang, S. Hirose, and R. C. Batra. Analysis of 2-dimensional transient problems for linear elastic and piezoelectric structures using the consecutive-interpolation quadrilateral element (CQ4). European Journal of Mechanics-A/Solids, 58, (2016), pp. 112–130. https://doi.org/10.1016/j.euromechsol.2016.01.010. https://doi.org/10.1016/j.euromechsol.2016.01.010.">

M. N. Nguyen, T. Q. Bui, N. T. Nguyen, T. T. Truong, and L. Van Lich. Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements. International Journal of Mechanical Sciences, 134, (2017), pp. 370–386. https://doi.org/10.1016/j.ijmecsci.2017.10.022. https://doi.org/10.1016/j.ijmecsci.2017.10.022.">

M. Shibahara and S. N. Atluri. The meshless local Petrov–Galerkin method for the analysis of heat conduction due to a moving heat source, in welding. International Journal of Thermal Sciences, 50, (6), (2011), pp. 984–992. https://doi.org/10.1016/j.ijthermalsci.2010.12.012. https://doi.org/10.1016/j.ijthermalsci.2010.12.012.">

Y. Sun and X. Zhang. Heat transfer analysis of a circular pipe heated internally with a cyclic moving heat source. International Journal of Thermal Sciences, 90, (2015), pp. 279–289. https://doi.org/10.1016/j.ijthermalsci.2014.12.009. https://doi.org/10.1016/j.ijthermalsci.2014.12.009.">

B.-L.Wang and J.-C. Han. A finite element method for non-Fourier heat conduction in strong thermal shock environments. Frontiers of Materials Science in China, 4, (3), (2010), pp. 226–233. https://doi.org/10.1007/s11706-010-0090-4. https://doi.org/10.1007/s11706-010-0090-4.">

W. T. Zhao, J. H.Wu, and Z. Chen. Analysis of non-Fourier heat conduction in a solid sphere under arbitrary surface temperature change. Archive of Applied Mechanics, 84, (4), (2014), pp. 505–518. https://doi.org/10.1007/s00419-013-0814-x. https://doi.org/10.1007/s00419-013-0814-x.">

Downloads

Published

25-06-2019

How to Cite

[1]
M. N. Nguyen, T. T. Truong and T. Q. Bui, An enhanced nodal gradient finite element for non-linear heat transfer analysis, Vietnam J. Mech. 41 (2019) 127–139. DOI: https://doi.org/10.15625/0866-7136/12977.

Issue

Section

Research Article

Most read articles by the same author(s)