Crack identification in multiple cracked beams made of functionally graded material by using stationary wavelet transform of mode shapes

Tran Van Lien, Ngo Trong Duc
Author affiliations

Authors

  • Tran Van Lien National University of Civil Engineering, Hanoi, Vietnam
  • Ngo Trong Duc Design Consultant and Investment of Construction, Ministry of Defense, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0866-7136/12835

Keywords:

crack identification, multiple cracked beam, functionally graded material (FGM), stationary wavelet transform (SWT), mode shapes

Abstract

This paper presents crack identification in multiple cracked beams made of functionally graded material (FGM) by using stationary wavelet transform (SWT) of mode shapes and taking into account influence of Gaussian noise. Mode shapes are obtained from multiple cracked FGM beam element and spring model of cracks. The theoretical development was illustrated and validated by numerical examples. The investigated results show that crack identification method by using SWT of mode shapes is efficient and realizable.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Z. H. Jin and R. C. Batra. Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids, 44, (8), (1996), pp. 1221–1235. https://doi.org/10.1016/0022-5096(96)00041-5. https://doi.org/10.1016/0022-5096(96)00041-5.">

F. Erdogan and B. H. Wu. The surface crack problem for a plate with functionally graded properties. Journal of Applied Mechanics, 64, (3), (1997), pp. 449–456. https://doi.org/10.1115/1.2788914. https://doi.org/10.1115/1.2788914.">

L. L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16, (6), (2009), pp. 488–502. https://doi.org/10.1080/15376490902781175. https://doi.org/10.1080/15376490902781175.">

J. Yang, Y. Chen, Y. Xiang, and X. L. Jia. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312, (1-2), (2008), pp. 166–181. https://doi.org/10.1016/j.jsv.2007.10.034. https://doi.org/10.1016/j.jsv.2007.10.034.">

K. Aydin. Free vibration of functionally graded beams with arbitrary number of surface cracks. European Journal of Mechanics-A/Solids, 42, (2013), pp. 112–124. https://doi.org/10.1016/j.euromechsol.2013.05.002. https://doi.org/10.1016/j.euromechsol.2013.05.002.">

J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83, (1), (2008), pp. 48–60. https://doi.org/10.1016/j.compstruct.2007.03.006. https://doi.org/10.1016/j.compstruct.2007.03.006.">

D.Wei, Y. Liu, and Z. Xiang. An analytical method for free vibration analysis of functionally graded beams with edge cracks. Journal of Sound and Vibration, 331, (7), (2012), pp. 1686–1700. https://doi.org/10.1016/j.jsv.2011.11.020. https://doi.org/10.1016/j.jsv.2011.11.020.">

K. Sherafatnia, G. Farrahi, and S. A. Faghidian. Analytic approach to free vibration and buckling analysis of functionally graded beams with edge cracks using four engineering beam theories. International Journal of Engineering-Transactions C: Aspects, 27, (6), (2013), pp. 979–990. https://doi.org/10.5829/idosi.ije.2014.27.06c.17. https://doi.org/10.5829/idosi.ije.2014.27.06c.17.">

N. T. Khiem and D. T. Hung. A closed-form solution for free vibration of multiple cracked Timoshenko beam and application. Vietnam Journal of Mechanics, 39, (4), (2017), pp. 315–328. https://doi.org/10.15625/0866-7136/9641. https://doi.org/10.15625/0866-7136/9641.">

N. T. Khiem, L. K. Toan, and N. T. L. Khue. Change in mode shape nodes of multiple cracked bar: I. The theoretical study. Vietnam Journal of Mechanics, 35, (3), (2013), pp. 175–188. https://doi.org/10.15625/0866-7136/35/3/2486. https://doi.org/10.15625/0866-7136/35/3/2486.">

N. T. Khiem, L. K. Toan, and N. T. L. Khue. Change in mode shape nodes of multiple cracked bar: Ii. the numerical analysis. Vietnam Journal of Mechanics, 35, (4), (2013), pp. 299–311. https://doi.org/10.15625/0866-7136/35/4/2487. https://doi.org/10.15625/0866-7136/35/4/2487.">

S. Kitipornchai, L. L. Ke, J. Yang, and Y. Xiang. Nonlinear vibration of edge cracked functionally graded Timoshenko beams. Journal of Sound and Vibration, 324, (3-5), (2009), pp. 962–982. https://doi.org/10.1016/j.jsv.2009.02.023. https://doi.org/10.1016/j.jsv.2009.02.023.">

Z. Yu and F. Chu. Identification of crack in functionally graded material beams using the p version of finite element method. Journal of Sound and Vibration, 325, (1-2), (2009), pp. 69–84. https://doi.org/10.1016/j.jsv.2009.03.010. https://doi.org/10.1016/j.jsv.2009.03.010.">

¸S. D. Akba¸s. Free vibration characteristics of edge cracked functionally graded beams by using finite element method. International Journal of Engineering Trends and Technology, 4, (10), (2013), pp. 4590–4597.

A. Banerjee, B. Panigrahi, and G. Pohit. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA. Nondestructive Testing and Evaluation, 31, (2), (2016), pp. 142–164. https://doi.org/10.1080/10589759.2015.1071812. https://doi.org/10.1080/10589759.2015.1071812.">

K. V. Nguyen. Crack detection of a beam-like bridge using 3D mode shapes. Vietnam Journal of Mechanics, 36, (1), (2014), pp. 13–25. https://doi.org/10.15625/0866-7136/36/1/2965. https://doi.org/10.15625/0866-7136/36/1/2965.">

H. Su and J. R. Banerjee. Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Computers & Structures, 147, (2015), pp. 107–116. https://doi.org/10.1016/j.compstruc.2014.10.001. https://doi.org/10.1016/j.compstruc.2014.10.001.">

T. V. Lien, N. T. Duc, and N. T. Khiem. Free vibration analysis of multiple cracked functionally graded Timoshenko beams. Latin American Journal of Solids and Structures, 14, (9), (2017), pp. 1752–1766. https://doi.org/10.1590/1679-78253693. https://doi.org/10.1590/1679-78253693.">

T. V. Lien, N. T. Duc, and N. T. Khiem. Mode shape analysis of multiple cracked functionally graded Timoshenko beams. Latin American Journal of Solids and Structures, 14, (7), (2017), pp. 1327–1344. https://doi.org/10.1590/1679-78253496. https://doi.org/10.1590/1679-78253496.">

N. T. Khiem and T. V. Lien. The dynamic stiffness matrix method in forced vibration analysis of multiple-cracked beam. Journal of Sound and Vibration, 254, (3), (2002), pp. 541–555. https://doi.org/10.1006/jsvi.2001.4109. https://doi.org/10.1006/jsvi.2001.4109.">

T. V. Lien, N. T. Duc, and N. T. Khiem. Mode shape analysis of multiple cracked functionally graded beam-like structures by using dynamic stiffness method. Vietnam Journal of Mechanics, 39, (3), (2017), pp. 215–228. https://doi.org/10.15625/0866-7136/8631. https://doi.org/10.15625/0866-7136/8631.">

F. Nazari and M. H. Abolbashari. Double cracks identification in functionally graded beams using artificial neural network. Journal of Solid Mechanics, 5, (1), (2013), pp. 14–21.

N. T. Khiem and N. N. Huyen. A method for crack identification in functionally graded Timoshenko beam. Nondestructive Testing and Evaluation, 32, (3), (2017), pp. 319–341. https://doi.org/10.1080/10589759.2016.1226304. https://doi.org/10.1080/10589759.2016.1226304.">

H. Sohn, C. R. Farrar, F. M. Hemez, and J. Czarnecki. A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory, USA, (2003).

C. Surace and R. Ruotolo. Crack detection of a beam using the wavelet transform. In Proceedings-Spie The International Society For Optical Engineering, (1994), pp. 1141–1147.

K. M. Liew and Q. Wang. Application of wavelet theory for crack identification in structures. Journal of Engineering Mechanics, 124, (2), (1998), pp. 152–157. https://doi.org/10.1061/(asce)0733-9399(1998)124:2(152). https://doi.org/10.1061/(asce)0733-9399(1998)124:2(152).">

Q. Wang and X. Deng. Damage detection with spatial wavelets. International Journal of Solids and Structures, 36, (23), (1999), pp. 3443–3468. https://doi.org/10.1016/s0020-7683(98)00152-8. https://doi.org/10.1016/s0020-7683(98)00152-8.">

E. Douka, S. Loutridis, and A. Trochidis. Crack identification in beams using wavelet analysis. International Journal of Solids and Structures, 40, (13-14), (2003), pp. 3557–3569. https://doi.org/10.1016/s0020-7683(03)00147-1. https://doi.org/10.1016/s0020-7683(03)00147-1.">

C. C. Chang and L. W. Chen. Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach. Mechanical Systems and Signal Processing, 19, (1), (2005), pp. 139–155. https://doi.org/10.1016/j.ymssp.2003.11.001. https://doi.org/10.1016/j.ymssp.2003.11.001.">

W. Zhang, Z. Wang, and H. Ma. Crack identification in stepped cantilever beam combining wavelet analysis with transform matrix. Acta Mechanica Solida Sinica, 22, (4), (2009), pp. 360–368. https://doi.org/10.1016/s0894-9166(09)60285-8. https://doi.org/10.1016/s0894-9166(09)60285-8.">

S. Zhong and S. O. Oyadiji. Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mechanical Systems and Signal Processing, 21, (4), (2007), pp. 1853–1884. https://doi.org/10.1016/j.ymssp.2006.07.007. https://doi.org/10.1016/j.ymssp.2006.07.007.">

H. Gökdăg and O. Kopmaz. A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms. Journal of Sound and Vibration, 324, (3-5), (2009), pp. 1158–1180. https://doi.org/10.1016/j.jsv.2009.02.030. https://doi.org/10.1016/j.jsv.2009.02.030.">

T. V. Lien, N. T. Khiem, and T. A. Hao. Crack identification in frame structures using the stationary wavelet transform of mode shapes. Jokull, 64, (6), (2014), pp. 251–262.

J. C. Goswami and A. K. Chan. Fundamentals of wavelets: theory, algorithms, and applications. JohnWiley & Sons, (2011).

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi. Matlab wavelet toolbox TM 4 user’s guide. The MathWorks, Inc. Natick, Massachusetts, (2009).

A. V. Ovanesova and L. E. Suarez. Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 26, (1), (2004), pp. 39–49. https://doi.org/10.1016/j.engstruct.2003.08.009. https://doi.org/10.1016/j.engstruct.2003.08.009.">

X. H. Wang, R. S. H. Istepanian, and Y. H. Song. Microarray image enhancement by denoising using stationary wavelet transform. IEEE Transactions on Nanobioscience, 2, (4), (2003), pp. 184–189. https://doi.org/10.1109/tnb.2003.816225. https://doi.org/10.1109/tnb.2003.816225.">

Downloads

Published

25-06-2019

How to Cite

[1]
T. V. Lien and N. T. Duc, Crack identification in multiple cracked beams made of functionally graded material by using stationary wavelet transform of mode shapes, Vietnam J. Mech. 41 (2019) 105–126. DOI: https://doi.org/10.15625/0866-7136/12835.

Issue

Section

Research Article