Open Access Open Access  Restricted Access Subscription Access

Phase transformation surfaces around a crack tip for a shape memory alloys

Christian Lexcellent

Abstract


Depending of the shape of the crack tip e.g. with or without curvature, the size of the phase transformation surface between a mother phase A (austenite) and a producted phase M (martensite) is different. The presentation is focussed to the modes I and II (opening and shearing modes). The elastic stress field around the crack tip without curvature is known in the litterature and the use of Linear Elastic Mechanical Theory is consistent with the deformations amplitude associated the beginning of the phase transformation (A \(\Rightarrow\) M). In order to take into account the curvature at the crack tip, one uses the approximated expressions of Creager and Paris (1967). A special attention is devoted to take into account the asymmetry between tension and compression behavior in the surfaces prediction.

Keywords


crack detection; damage detection; multi-cracks detection; stiffness method; element stiffness; element stiffness index distribution

References


S. Daly, A. Miller, G. Ravichandran, and K. Bhattacharya. An experimental investigation of crack initiation in thin sheets of nitinol. Acta Materialia, 55, (18), (2007), pp. 6322–6330. doi:10.1016/j.actamat.2007.07.038.

S. Yi and S. Gao. Fracture toughening mechanism of shape memory alloys due to martensite transformation. International Journal of Solids and Structures, 37, (38), (2000), pp. 5315–5327. doi:10.1016/s0020-7683(99)00213-9.

X. M. Wang, Y. F. Wang, A. Baruj, G. Eggeler, and Z. F. Yue. On the formation of martensite in front of cracks in pseudoelastic shape memory alloys. Materials Science and Engineering: A, 394, (1), (2005), pp. 393–398. doi:10.1016/j.msea.2004.11.029.

S. W. Robertson and R. O. Ritchie. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials, 28, (4), (2007), pp. 700–709. doi:10.1016/j.biomaterials.2006.09.034.

L. Orgéas and D. Favier. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta Materialia, 46, (15), (1998), pp. 5579–5591. doi:10.1016/s1359-6454(98)00167-0.

P. Vacher and C. Lexcellent. Study of pseudo-elastic behavior of polycristalline shape memory alloys by resistivity measurements and acoustic emission. In Proceedings of ICM VI, Kyoto, Japan, (1991).

M. R. Laydi and C. Lexcellent. Yield criteria for shape memory materials: convexity conditions and surface transport. Mathematics and Mechanics of Solids, 15, (2), (2010), pp. 165–208. doi:10.1177/1081286508095324.

C. Bouvet, S. Calloch, and C. Lexcellent. Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and nonproportional loadings. Journal of Engineering Materials and Technology, 124, (2), (2002), pp. 112–124. doi:10.1115/1.1448324.

J. B. Leblond and P. Germain. Mécanique de la rupture fragile et ductile. Hermés-Lavoisier, (2003).

Y. Murakami. Stress intensity factor handbook. The Society of Material Science, Pergamon Press, (1987).

G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, (3), (1957), pp. 361–364.

M. Creager and P. C. Paris. Elastic field equations for blunt cracks with reference to stress corrosion cracking. International Journal of Fracture, 3, (4), (1967), pp. 247–252. doi:10.1007/bf00182890.

M. R. Laydi and C. Lexcellent. Rice local phase angle study for a delamination problem between a shape memory alloy and an elastic material. Archive for Rational Mechanics and Analysis, 204, (3), (2012), pp. 977–1007. doi:10.1007/s00205-012-0495-6.

V. Taillebot. Contribution à l’étude de la rupture desalliages à mémoire de forme. PhD thesis, Universite de Franche Comte, (2012).

P. Suquet. Rupture et plasticit´e. In Ecole Polytechnique, (2003).

C. Maletta, E. Sgambitterra, and F. Furgiuele. Crack tip stress distribution and stress intensity factor in shape memory alloys. Fatigue & Fracture of Engineering Materials & Structures, 36, (9), (2013), pp. 903–912. doi:10.1111/ffe.12055.

C. Maletta and F. Furgiuele. Fracture control parameters for NiTi based shape memory alloys. International Journal of Solids and Structures, 48, (11), (2011), pp. 1658–1664. doi:10.1016/j.ijsolstr.2011.02.014.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


http://vjs.ac.vn/public/site/images/vjmech/untitled-1_3205