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A PHYSICO-MATHEMATICAL MODEL FOR
SOLUTE TRANSPORT IN GROUNDWATER

' NGUYEN PHI KHU
Inststute of Applied Mechanics NCST of Vietnam

ABSTRACT. In this paper a model for solute transport in groundwater, including physi-
co-mathematical basis, numerical method some simple example simulations is briefly pre-
sented. This model has been gradually improved in both simulation and methodology.

1. Introduction

Water quality becomes a limiting factor in the development and the use of
water resources. In some regions, the quality of both surface and groundwa-
ter resources deteriorates, special attention should be devoted to the pollution
of groundwater in aquifer. Serious environmental problems arise when polluted
groundwater emerges at ground surface or discharges into rivers and lakes.

The objective of this study is to illustrate the laws governing the movement
and accumulation of pollutant in groundwater flow, and to develop numerical
scheme that can be used to simulate pollutant’s distribution in aquifer. A system
of computer programs, named STG version 1.0, has been developed and its results
are also verified by comparing with analytical solutions.

2. Physico-Mathematical basis

2.1. The motion equation of groundwater flow

The mechanisms of density and pressure force for flow are expressed by a
general form of Darcy’s law to describe fluid flow in porous media [1]:

k,
ESU

v =——"Kk[Vp—pg] (2.1)

where V = (8/9z,8/8y,8/0z), v is the fluid flow vector, p - the pressure at
point r = (z,y, z) in the flow _domain, € - porosity, p; - fluid density, u - fluid
viscosity, k - solid matrix permeability, g - the gravitational acceleration vector.
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The relative permeability to fluid flow k, and the saturations are evaluated by the
Van Genuchten’s formulae [5], as follows:

e=VE[1-(1-57) ] = (-1 (@]

in which § = (s — s,;)/(1 — sr), sr is a residual saturation, below it the fluid
becomes immobile, p, - capillary pressure. a and n are parameters depending on
material of the flow domain.

2.2. The fluid mass balance equation in groundwater flow

Considering a control volume having the shape of a rectangular parallel-piped
box centered at (z,y, z), and using some transformations on partial derivatives to
introduce environmental parameters, rate of change of concentration, etc. the
following mass balance equation is obtained:

63]611 [ 301]301+V(Esp1v) Q, (2.2)

[”ISS°”+E”16 at T 1%%3¢;] Bt

where Q, = Qp(r,t) is the fluid mass source including solute mass dissolved at
an interior point r in the flow domain, C; is the solute mass concentration in
groundwater, S,, is specific pressure storativity which depends on the porous
matrix compressibility « and the fluid compressibility 8 by Sop, = (1 — €)a + 4.
The exact form of the fluid mass balance is obtained by employing Darcy’s law:

[plsSop + epy g;] gf + [E ggll] Qag;l - V[Elu—k'k[Vp - plg]] =y (2.3)

2.3. The solute mass balance equation in groundwater flow

The total flux of a pollutant by advection, dispersion and diffusion, is ex-
pressed by J¢ = €s[vp;C; —Dp(Vp;C1)] in which Dy, is the hydrodynamic disper-
sion, [1]. By considering a control volume and taking into account all components
in the construction of a balance equation, the solute mass balance equation in
groundwater flow is:

17)
En [esmCl + (1 —€)spsC ] = —VI°+espiT) +(1—¢€)psTs + @Q,C, (2.4)

where I'; is the solute mass source in fluid per unit fluid mass due to production
reactions, I'; adsorbate source per unit solid matrix mass due to production re-
actions within adsorbed material itself, C, - solute concentration of fluid source,
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- density of solid grains in solid matrix, C, - specific concentration of adsorbate
on solid grains.
The production terms I'; and I', for solute and adsorbate, respectively, can
be evaluated by linear models T'y = 43 + 11Cy, I's = 4§ + 4§ C, where 3¢ 5 15
73 are production rates.

Using the following balance equations in sohd and liquid phases

a(esm)
et
with noted that |v,| ~ 0 and dC,/dt = X - dC1/0t, where A is the proportional
factor determined by Fruendlich, Langmuir or linear model, after manipulating (8]
the solute mass balance equation (4) becomes:

= Qp — V(esp1v) -a—t[(l —€)pa] + V[(1 —€)pavs] = 0

[espy +(1 - )/\p_,] L+ esp,VC, — V]esD,V(p,Cy)] =
= Qp(Cp — C1) + 3p171g + €5p1711C1 + (1 — €)po15 + (1 — €)pe711Cs

(2.5)
SPECIFIC CASES. Let R and ¢ be factors determined by
1 | Qy 1 @
R=1+(——1) -A ¢= e . 2.6
€ p1s ¢ esp1 +(1—¢€)Aps Respr ey

When €, p; and s are constants, C, and production rates are zero. The solute
transport equation (2.5) reduces to the simple form as follows:
aC
R—a—l = V(D,VC,) —vVC; — ¢RC, (2.7)
The R factor decreases the value of the right-hand term or retards the solute
transport process, so called retardation factor. The ¢ factor depends on @, without
solute concentration source and dilutes the concentration of pollutant and so called
decay factor.

- One-dimensional form. When D}, is a constant, in the one dimensional case,
equation (5) becomes, [L, 5]:
ac, %C, 0C,

R— =D - - .
ot " orz oz R ey

- Two-dimensional form. Similarly, (2.5) can be manipulated to the following
form of the two-dimensional case, (2, 3, 4]:

aC, d2C;. 8cC, a%c, aC, aC;
R— =D D= —
A Y 9zdy TP oy? U2 5z W dy

ot 2257 —-¢RC, (2.9)
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2.4. Initial and boundary conditions

In order to yield a solution for a particular studied case, the partial equations
expressing the balance of fluid mass (2.3) and of a pollutant constituent (2.5)
have to be supplemented by appropriate initial and boundary conditions. Thes}e
conditions should be obtained from actual observations of the considered region.
Initial conditions include the specification of pressure and concentration at some
initial time at all points of the flow domain. Boundary conditions, generally, are
given in the form of Dirichlet, Neumann, or Cauchy type.

3. Numerical methods

The three-dimensional bounded volume of an aquifer D, in which groundwater
flow and solute transport is to be simulated, is completely divided up into a single
layer of contiguous blocks, called quadrilateral finite elements. All twelve edges
of each block are straight and four of these edges are parallel to the z-coordinate
direction.

The zy-coordinate of the midpoint of each 2-edge is referred to as a nodal
point and represents the entire z-edge of element. So the element has a three-
dimensional shape but always has only four nodes, and a finite element mesh of
the problem is created by these nodes. The domain D, thus may be defined in
three space dimensions but the problem is discretized and solved numerically in
two dimensional model. Such a method reduces number of hydrogeologic data
need to be collected.

The numerical approximation of the equation (2.3) with its corresponding
conditions can be performed by the Galerkin-Petrov technique of the finite element

method and by the finite difference method.

1 at node

The resulting system of linear equations to determine pressure p:""
t and at time step n + 1 is:

nn

A.
2 [—’6.-,-+B.-f +Vi5u']1’?+l = QI +uippE+ DI +
Atn+1

A;
Atn.+1

ac e
—| E
& 5
(3.1)
where ¢ = 1,...,nn, nn is the number of nodes, 6;; is the Kronecker delta, v; -
the conductance,'p'gg - the specified pressure at node :. Fluid sources, At,+; =
trtl_gn p? = p;(t"), and pP*! = p;(t"*!). Ai, Bij, Ei, D; and V; are determined

by:

p?+[ .
- 1

1=1

ds plkr e
Ai={prssop+en 2}V By = [[ {2V, | VuiB(a,v. ) dudy
D
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aC,

{‘_12} - BT / / B(z,y,t)pidyds.

dt Ath

kre .
ssi’f—‘—}w, D'=// {[BrxeVes(018) } VwiB (2,0, t)dody

Similarly, the form of the discretized solute mass balance equation (2.5) is
also implemented and the resulting system to determine concentration G'H'1 is:

n+1
n+1 n+41 n+1 n+1 nt+1 n+1 n-+1 2
S (Ao [ @ s e

Aptt .
. Q?+IC;:‘_+1 4 Qn+lcn+l +Fr]uN+—l +En+1 +Gn+1 H At Cina g = 11._"nn
: tn+1

(3.2)

where A; = {eispy + (1 — s)/\ps}iV;, CP = Ci(t"), C:"H = C;(t"*!), QBc; =
Vilpec; — pi) and:

By; =/ {sspl(Dh)ij}V(ijdyd:c, Di; = // {espl(v)V(pj}w;Bd,zdy
D D ~

G: = {ESPi'V}Cl},-Vi, Ggr: = {(1 - e)ps’yfRL}‘.V,-
E; = {espiny + (1 — s)psqg}_,.v,-, G ={(1- E)Pa"l;RR}‘-Vi

F i) = ~Fourat) = - [ [ {estDR)9(p101)} -npud
i D

in which, ¢; and w; are the basis and symmetric weighting function, respectively,
and n is the unit outward normal vector to the three-dimensional surface bound-
ing the region to be simulated. The above double-integrals are evaluated by the
method of Gaussian integration.

4. STG Simulation

The following illustration outlines a number of examples whose results serve to
verify the accuracy of the first STG simulations for a range of flow and transport
problems. The Student-test of significance is applied to compare STG results
analytical solutions.
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- One-dimensional case. Let us consider a shallow, homogeneous, isotropic
aquifer with its vertical section presented in figure 1. A Chemical waste inflow
is being continuously poured into the ditch with the rate of 0.1 m®/day per unit
length of it. The concentration of a certain non-reactive constituent in this wast
is'10 kg/m?>. Using the equation (2.8) with R = 1, ¢ =0, v = 1m/day, the initiﬁ
condition C;(z,0) = 0 and boundary conditions:

when £ — o0, 8C1/0z =0
when z = 0, —Dp3C;/0z + vC) = vCoexp(—t) if to >t >0,=0ift >t

where Cj is the concentration of waste inflow. The analytical solution illustrated in
[3] and sketched by solid lines in figures 3, 4. The STG numerical solution obtained
with 94 nodes, 46 elements and plotted by dot-points in the corresponding figures.

- Two-dimensional case. Consider the equation (2.9) with: D,, =0, D, =
1m?/day = 10Dy, v, = 1m/day, v, = 0, Liquid waste from a factory is being
discharged into a surface impoundment 2d = 100m long and 5m wide. Aquifer
is homogeneous, isotropic, saturated with steady flow as shown in figure 2. Using
the following conditions:

Coe™t if —d<y<d, =8 9 T
0 if y<—-dory>d, z—oo Oz y—oo Jy

C(0,y,1) ={

the analytical solution is given in [4]. By partitioning the flow domain into 160
nodes, 135 elements and Cy = 1000 ppm, the STG solution obtained and plotted
in figures from 5 to 8.

Using the Student-test of significance in comparison the analytical and STG
solutions leads to the conclusion that the difference between these is non-signifi-

cant.
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Fig. 1. Vertical section of the aquifer -~ Fig. 2. Plan view of the flow
along the direction of flow and the source of contamination
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COMPARISON OF STG RESULTS AND ANALYTICAL SOLUTIONS
One-dimensional solute transport case
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Using STG model to solve a problem in a specified three dimensional region
requires more data, especially hydrogeologic observation. Such as problem and
some other related investigations will be represented in a next publication.

5. Conclusions

1. The equations (2.3) and (2.5) in three dimensions are obtained by taking
physical properties of aquifer into account, and these partial differential equations
describe the solute transport phenomenon with single-species in groundwater.

2. The specific cases of these equations are the ones introduced in the works
[1]-[5].

3. Using the Galerkin-Petrov technique, the equations (2.3), (2.5) with their
appropriate initial and boundary conditions are discretized and the system (3.1),
(3.2) are used in solving numerically the problem of single-species solute transport
in groundwater.

4. Comparison between STG solutions and analytical solutions for two special
cases shows that the model results are acceptable.

5. This numerical model will be improved and tested step by step before
applying it to complicated problems in reality.
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MO HINH TOAN LY VE LAN TRUYEN CHAT TRONG NUGC NGAM

Bai bdo nay thiét 14p hé cac phwong trinh dao ham riéng (2.3), (2.5) cho bai
toan ba chiéu vé lan truyén chit trong nwéc ngim, ding phwong phédp Galerkin-
Petrov va phwong phép sai phian hiru han dé gi4i bai todn béng hé (3.1) va (3.2)
sau khi d3 roi rac mien khong gian cta bai toan theo mét lwéi phing cac phin ti
hiru han t& gidc.

Truomg hop dic biét cia (2.5) ciing da dwge xem xét dwéi dang (2.7), (2.8),
(2.9) va hoan toan trung khép véi cac két qué néu trong céc cong trinh (2.1)-(2.5).
Chwong trinh mdy tinh mang tén STG buéc diu ciing da dwoc thiét lap dé gidi
bai toan.

Kiém nghiém qua mét s6 trirong hop don gidn, c6 nghiém giai tich - két qud
tir phép kiém dinh Student chitng té nhirng két qué budc diu nay cda STG 1a cé
thé chip nhin dwoc. Viéc khdo sat loi gidi s8 cho trromg hop ba chiéu cling véi
nhiéu vdn dé khac dang dwoc tién hanh va sé trinh bay trong cic bai bio ké tiép.

Mé hinh todn cling véi cidc phwong phdp sé va chwong trinh méay tinh STG
dang dwoc ti€p tuc nghién ctru va cdi tién dan d€ cé thé ng dung trong mé phdng
bai todn lan truyén chit trong cidc méi trirdng nwéc ngam.
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