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1. Introduction

The stability of elastic plate in combined forces is investigated [1]. For the
. viscoelastic plate the problem becomes more complicated because of taking into
account time effect. The stability of the plate falls with increasing time. When
the viscoelastic plate is subjected to many forces simultaneously it is necessary
to find a moment (time) the plate lost stability (critical time). In order to solve
this problem the authors have used the theory of pseudo-bifurcation points and
method “elastic analogy” [2] that allows to use the result of the problem of elastic
stability in solving the problem of creep stability.

2. Construction of “elastic analogy”

Let us rewrite the equation of state of viscoelastic material in the form for
“stimulus” Ao, Ae

Ae(t) = A"(‘)

/ Ac(t))K(t, tl)dtl, | (2.1)

where Ao = 0 — 0%, Ae=e — €, 0°,¢°

- stress and strain in the adjacent state.

- stress and strain in the basis state, o, e

Expanding the function Ac(t;) into a series in the neighbourhood of tl =t
and using the definition of pseudo - bifurcation of N - degree (PBN: A a # 0;

A 20 AY =0, A =0, K = 0,1,...,M, K # N, N < M) after
transfo;matlons, we obtain “elastic analogy”

AS = Bya'?. (2.2)
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where

t
En - Tv'/ t, ~t)N )¢ t,)dt,] . (2.3)
0

We find that (2.2) is similar in form to Hooke’s law, where fictive modulus of
elasticity EN depends on time.

3. Viscoelastic plate compressed in two directions

Let us consider the elastic stability of rectangular plate (a x b) compressed
in two directions, when 0,, 03 are small the equilibrium of plate is stable (Fig. 1).
We have the domain OACB - the stable domain (Fig.2).” When o, o2 are big
enough the plate is not stable and we have a unstable domain. The curve ACB’

called boundary curve.
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Replacing the curve ACB by the straight line AB allows to determine the
stable domain OAB - the lower bound of the real stable domain (as stable domain
is a convex domain after the Papcovic’s theorem).

The equation of the line AB can by written in the form

%y (3.1)

where o7, 03 - called simple critical stresses

x2D . 2D

0’; = klﬁ’ Oy = kgﬁ, (3.2)
and the modulus B
h
D= m ; (3.3)‘
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k1, k2 determined by using the table [1].
Denoting the left - hand side of (3.1) by w, we get
gy ., 02

wza_;*l*o—;' (3.4)

If the coordinates of the point M(0,;,02) satisfied (3.1), M is on the line AB
and w = 1. If M is inside the stable domain OAB then w < 1 (as 0, < o},
0z < 03)

Substituting (3.2) in (3.1) we have

o1 (23] bzh 1. Lo
(kl " k2 )'7r2D‘ =1 - . - (359)
or 2\p2 '
o1 02\ 12(1 —p%)b* . N ,
(kl * kz) =Ty R - (35h)
In this case (01,02) € AB.

Let us now consider viscoelastic plate. Using the criterion of creep stability
(2] (PB2 is the limit of the creep stable domain) from (2.3) we have

E,= E[1 - % /t (tl - t)2k(t,t1)dt1] - (3.6)

E - modulus of elasticity in the elastic sta.ble condition (3.5). E, - fictive modulus
of elasticity in the creep stable condition (3.6), that depends on t. Ift = 0, E; = E,
(t>0).

We replace E in (3.5b) by Ez from (3.6), it means we replace (01,02) € AB
by (01,02) given in the stable domain. Thus, we can get

t

w=[1-3 E / (tl—t) R(t,12)dt, |7 (3.7)

0

where w <1

72D
Let us consider the case: 03 = 00, 03 = a20¢ where 0g = Tk ay, o3 -

are given, oy < ky, oz < ks, (01,02) in the stable domain.
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From (3.7) and (3.4) we get

-1
o= (o) [1-E /(t1 — 2R (¢, t2)dt ] (3.8)
k1
., 47D

In the case of square plate (a = b) 0] =03 = —ap, Ve obtain

E t -1
w = _a_]':;” = 5—/ 1 - t) K(t tl)dtl] . (3,9)

0

Using the creep kernel K(t,t;) we can obtain the relation w ~ t.,. Thus, we
can find t., when the applied stresses oy, 05 are given.

4. Viscoelastic plate compressed in one direction and in shear

Let us consider elastic rectangular plate in compression and in shear (Fig. 3).
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It can be seen from (1] the values of simple critical stresses

* 72D * 7|'2D
or=kiggr, T =ksyys (4.1)
we determine k;, k3, using the table.
The equation of limit straight line is written as followes
4 =1 4.2
o,l + T* 1’ ( )
we denote o r
01 T .

where o, 7 - really acting stresses



Let us now consider viscoelastic plate acted on by the stresses

m2D

0} = 00, T = 30, 0o = 2h

where a;, a3 are given (o) < ki, ag < k3).

In a similar manner, we get the equality

w= ('le + ka) 1 - -—/(tl —t)’K(t tl)dtl]

Choosing the creep kernel K(t,t;) we can find the relation w ~ t.,. Thus, we have
t.» when the applied stresses o;, 7 are given.

5. Plate in shear and in compression in two directions

Lut us consider elastic plate (a x b) (Fig.4). The values of simple critical
stresses are given [1]

D . H 72D
bzh y Og9 = kz—-2——", k3 b2h, y (5.1)

where k;, k3, k3 - determined with the help of the tables [1].

=k1—

The equation of limit plane is written in the form (Fig.5)
1' . _
O SR (5.2)
o] o0 ‘
We denote
w=242, T (5.3)
of o3 1’ )
where 01, 02, 7 really acting stresses.

If the point M(0,,0,,7) is on the limit surface w = 1; if M is inside the stable
domain w < 1.

Let us consider the viscoelastic plate subjected to 3 stresses

2
01 = @100, 02 = @200, T = 030, O¢ = TRk (a1 < kg, az < k3, as < k3)
In a similar manner, we get
t
( + 22 ) = [1 - E/(t1 —t)2k(t,t1)dt1]_l. (5.4)
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Choosing the creep kernel K(t,t;) in a determined form we can find the
relation w ~ t.,. Thus, we obtain ¢t., when the applied stresses 0,, 03, 7 are given.

e If we choose the creep kernel in the form (used for concrete)
K(,t) = 6% [(Co + Age PY)(1 - e7E~1))]; (5.5)
. 1
substituting (5.5) in (5.4), we get

2t2
w = (al + 224 ﬂ) = {1+ECO[1—e""(1+fyt+ 12—)]+

ki " ky ks
2 242 -1
e (N PR

o If we choose the creep kernel in the form (for polymer)

—-A

K(t,t,) = —— 5.7
( ’ l) (t _ tl)a ’ ( )
where 0 < a < 1, A > 0; A, a - material constants.
substituting (5.7) in (5.4), we get
. s

201-a)(=-1) |

tey = W ; (5.8)
AEa(a+1)

Consequently, if the stresses acting on the plate o1, 03, 7 are given. We can
determine the critical time ¢., with the help of (5.6), (5.8).
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6. Conclusion

If the given stresses acting on the viscoelastic plate is smaller than the simple
critical stresses we can use (3.9), (4.4), (5.4) to determine critical time ¢.,. These
formulas are obtained with the help of Cliusnhicov’s theory of pseudo - bifurcation
points.

In a similar manner we can solve the problems on stébility of viscoelastic plate
subjected to different combined forces, with different boundary conditions.

This work is completed with financial support of the Council for Natural
Science of Vietnam. : :
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ON DINH CUA TAM PAN NHOT CHIU TAI TRONG TO HOP

Bing viéc st dung 1y thuyét v& cic diém phin nhénh gid va phwong phip
xay dung cic “twong tw dian hoi” cédc tic gid da gidi bai todn on dinh cia tim dan
nhét chju dong théi céc tai trong khic nhau (chiu nén theo hai phwong, chiu kéo
va chiu c4t...). K& qua 1 tim dwoc bidu thérc gidi tich cda thoi gian téi han dng
véi céc tai trong xac dinh.



