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SUMMARY. The paper presents the estimation of the exact exceedance prob ability 
(EEP) of stationary responses of some white noise-randomly excited nonlinear systems 
whose exact probability density function can be known. Consequently, the approximate 
exceedance probabilities (AEPs) are evaluated based on the analysis of equivalent lin
earized systems using the traditional Caughey method and the extension technique of 
LOMSEC. Comparisons of the AEPs versus the EEP are demonstrated. The obtained 
results indicate important characters of the exceedance probability (EP) as well as the 
influence of nonlinearity over EP. The evaluation of the applied possibility of the proposed 
linearization techniques for estimating AEPs are made. 

1. Introduction 

One of the most concerned problems in the design process of types of struc
tures, is the estimation of the extreme demands on the structure during a specified 
period of time. This is the same meaning with th.e estimation of exceedance proba
bility of the extreme responses during the period of time. In general, this is a very 
difficult problem and usually, only indicative answers can be obtained in practice. 
However, in the context of civil engineering, structures subjected to environmental 
loads such as wind and ocean waves, a remarkable developments over the last two 
decades in modelling both the structure, the loading process and the interaction 
between them has been made. 

The framework usually adopted for the estimation of extreme responses of civil 
engineering structures for the purpose of design, is that of modelling the loading 
processes on the structure as stochastic processes. In cases where the dynamic 
behaviour of the structure can be modelled by linear equations of motion, the 
response statistics can be analysed in a rather satisfactory manner. However, this 
is usually an exception, especially for the estimation of extreme responses. Since 
stochastic response analysis of nonlinear structures is very difficult, methods of 
stochastic linearization have been ·developed. 

When analysing nonlinear random systems ~sing the equivalent linearization 
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techniques, the analysis of the second-order moments were very much investigated; 
whereas the researches on the exceedance probability of the extreme responses 
were rarely made. Naess [2-4] has presented results from initial efforts to develop 
a stochastic linearization procedure specifically designed for making predictions of 
large responses. 

This paper presents the estimation of the EEP of the stationary responses 
of some white noise-randomly excited nonlinear systems, whose exact probabili
ty density function can be found. Through the obtained EEP, some important 
characters of the EP, especially the influence of nonlinearity over EP are intro
duced. Consequently, the AEPs are evaluated based on the analysis of equivalent 
linearized systems using the traditional Caughey method [ 1] and the extension 
technique of LOMSEC [9-11]. Comparisons of the AEPs versus the EEP are given 
in order to evaluate the applied possibility of the proposed linearization techniques 
for estimating AEPs. The systems considered in this paper, and relative data for 
estimation of the exceedance probability are originated from the previous publi
cations of the Author himself [10-12]. The numerical calculations are added by a 
special software of Mathematica 3.0 [13]. 

2. Estimation of exceedance probability of displacement response 

The extreme value distribution of a stationary process X(t) is assumed, for 
simplicity, to be given as [7]: 

F(x) = Prob{M(T) :::; x} = exp{-v(x)T}, (2.1) 

where M(T) = max{X(t); 0 :::; t :::; T} is the largest value of X(t) during a time 
interval of length T; v(x) denotes the mean up-crossing rate of X(t). At level Xp 

the exceedance probability p+ during time T is defined by: 

(2.2) 

From (2.1), (2.2) we get: 

p+ = 1 - F(x) = 1 - exp{-v(x)T} 

=> 100(1 - F(x)) = 100[1 - exp{-v(x)T}]%. 
(2.3) 

A typical range of exceedance probabilities for design purposes is from 1 % to 20%. 
The time interval chosen here is T = 3h. 

The mean up-crossing rate v(x) is defined by [8]: 

00 

v(x) = J xp(x, x)dx, 

0 
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~here p(x, ±) is joint probability density function (PDF) of responses X(t) and 
X(t), i: = dx/dt. However, it is difficult to obtain the exact PDF of randomly 
excited nonlinear systems in practice. Even if the response can be modeled as a 
Markov process, the possibility of an exact PDF solution is still limited. Therefore, 
some approximate methods were developed and investigated for estimating the 
mean up-crossing rate [5, 6, 8, 12]. 

Exact exceedance probability (EEP) 

The EEP of the stationary responses of the randomly nonlinear structures is 
defined by using formulas (2.3), (2.4); with the assumption that the exact joint 
probability density function Pe(x, ±) of the responses x(t), i:(t) can be known by 
solving Fokker-Planck equation [10-12]: 

p~ = 100[1 - exp{-ve(x)T}]%, {2 .5) 

where ve(x) is the exact mean up-crossing rate {EMCR): 

00 

Ve(x) =I XPe(x, x)dx. (2.6) 

0 

Approximate exceedance probability (AEP) 

The AEPs are also defined by using formulas (2.3), {2.4) but for the equivalent 
linearized systems {obtained by Caughey or LOMSEC, respectively). In this case, 
the joint probability density functions are approximate and considered as the norm: 

(2.7) 

where a; = (x 2 ), a :i: = (±2 ) are second moments of the equivalent linearized 
system. The approximate mean up-crossing rates (AMCRs) as follows: 

00 

vA(x) = j xpA(x,x)dx. 
0 

{2.8) 

Using the linearization method of Caughey or LOMSEC, (x2)a, (±2)a and (x2) LG, 

(x2)La can be calculated [10-11]. Consequently the AMCRs of va(x), V£a(x) are 
evaluated by using formulas (2.7), (2.8) [12]. Then from (2.3), (2.4), (2.7), (2.8), 
the AEPs are defined as follows: 

p~ = 100[1 - exp{-vA(x)T} ]%. (2.9) 
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3. Illustrative examples 

Example 1. Consider the Duffing oscillator with Gaussian white noise excitation: 

(3.1) 

A series of calculation procedures to obtain the mean up-crossing rates (EMCR 
and AMCR) has been done in [12]. The results are: 

The EMCR as follows: 

rL(/
00

• · { 2h:i;
2} ) { 4h (w5 2 c 4)} y n x exp - ~ d:i; exp - a 2 2 x + 4x 

Ve(x) = 0 
00 (3.2) 

aV2if J exp { - ~~ (~5 x 2 + ~x4) }dx 
0 

The AMCRs according to the linearization criterion of Caughey· and LOMSEC 
are: 

00 

(j xexp { - 2(x2)a(:5 +,\a) }dx) exp { - 2(;:)G} 
va(x) ~ ~o _________ -;::_1=;=====-----:------

27r(x2)av w5 +>.a 

where Aa = 3c(x2)a 

r 

J t4 n(t)dt 

where ALG = Krc(x2
) LG and Kr = -

0 r---

1 t 2 n(t)dt 
0 

n(t) = _l_e-t2 /2 . 
V2if 

(3 .3) 

(3.4) 

Substitutions (3.2) into (2.5) and (3.3), (3.4) into (2.9) yields formulas for cal
culating the EEP and AEPs respectively. Table 1 shows the terminal expressions 
corresponding w~th specific value of the paramete.rs. 
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Fig 1 - 4 show the EER and AEPs. In order to distinguish graphics we use 
different lines as follows [ - Pt (the EEP), - - - Pb (the AEP of C~ughey), 
and------ PtG (the AEP of LOMSEC) ]. Numerical values are given in table 2. 
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Table 1. Expressions of the exceedance probabilities 
(w 2 = 1· h = 0 25 a= 1· c varies) 

0 ' . ' ' 

Pt p~ + PLG _ 

0.2 
100[1 - exp{ -0.17528 x 100[1 - exp{ - 0.18979 100[1 - exp{ -0.18744 

exp{-(0.5x2 + 0.05x4 )}T}] x exp{-0.71097x2 }T}] x exp{-0.67996x2 }T}] 

1 
100[1 - exp{-0.20615x 100[1 - exp{-0.24151 100[1 - exp{-0.23252 

exp{ -(0.5x2 + 0.25x4 )}T}] x exp{ -1.15138x2 }T}] x exp{ -1.07117x2 }T}] 

10 
100[1 - exp{-0.30597x 100[1 - exp{ -0.38985 100[1 - exp{ -0.36130 

exp{-(0.5x2 + 2.5x4)}T}] x exp{-2.99994x2 }T}] x exp{ - 2.73613x2 }T}] 

100 
100[1 - exp{ - 0.50867x 100[1 - exp{ -0.67199 100[1 - exp{ - 0.61060 

exp{-(0.5x2 + 25x4 )}T}] x exp{-8.91424x2 }T}] x exp{-8.07624x2 }T}] 
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Table 2. Some numerical values (w5 = 1; h = 0.25; a = 1; c varies) 

c Pt(%) x p~ (%) Error a(%) ·Pta(%) Error Le(%) 

0.2 20 1.22140 17.89220 -10.539 18.44680 -7.766 
15 1.40109 13.15230 -12.318 13.75770 -8.282 
10 1.59997 8.81236 -11.876 9.39274 -6.073 
5 1.85974 4.75265 -4.947 5.21268 4.254 
1 2.28151 1.39671 39.671 1.61923 61.923 

1 20 1.11953 15.72910 -21.355 16.65550 -16.723 
15 1.23250 11.84100 -21.060 12.80820 -14.612 
10 1.35736 8.31875 -16.813 9.23862 -7.614 
5 1.51999 4.94108 -1.178 5.70291 14.058 
1 1.78346 1.84307 84 .307 2.28502 128.502 

10 20 0.81164 14.96330 -25.184 16.36670 -18 .167 
15 0.85917 11.99080 -20.061 13.39600 -10.693 
10 0.91427 9.08760 -9.124 10.42380 4.238 
5 0.98935 6.01695 20.339 7.17509 43.502 
1 1.11692 2.73322 173.322 3.50632 250.632 

100 20 0.51720 16.95030 -15.249 19.03630 -4.819 
15 0.53803 14.16100 -5.593 16.20830 8.055 
10 0.56315 11.24750 12.475 13.18780 31.878 
5 0.59877 7.91912 58.382 9.62826 92.565 
1 0.66208 3.96942 296.942 5.17520 417.520 

Comments. From the figures and from table 2, it is shown that: at a specific 
level of P7, the extreme response X(t) reduces when the nonlinearity increases. 
For larger values of Pt (equal to small values of X(t)), one gets Ptc more improved 
than Pb, especially with a strong nonlinearity. For specified small values of Pt, 
both Pb and P!c have high relative errors though the absolute errors are not so 
high; however, one gets Pb better than P!c· 
Example 2 . Consider the case w6 = - 1 of the Duffing oscillator (3.1) . 

The formulas for calculating EMCR and AMCRs, then EEP and AEPs are 
quite the same as (3.2), (3.3), (3.4). Table 3 shows the terminal expressions 
corresponding with specific value of the parameters. Fig 5 - 8 show the EEP and 
AEPs . Th,e graphic symbols are similar to the above-mentioned. Some numerical 
values giv~n in table 4. 
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Table 3. Expressions of the exceedance probabilities 
(w5 = -1; h = 0.25; u = 1; c varies) 

Pt p~ + 
PLG 

100[1 - exp{ -0.02856x 100[1 - exp{-0.10338 100[1 -'- exp{ -0.03713 

exp{0.5x2 - 0.05x4}T}] x exp{ -0.21099x2} T}] x exp{-0.14387x2}T}] 

100[1 - exp{ -0.10216x 100[1 - exp{ -0.18166 100[1 - exp{-0.15756 

exp{0.5x2 - 0.25x4 )}T}] x exp{-0.65139x2}T}] x exp{-0.47504x2}T}] 

100[1 - exp{-0.24688x 100[1 - exp{-0.35588 100[1 - exp{-0.33650 

exp{0.5x2 - 2.5x4)}T}] x exp{-2.5x2}T}] x exp{-1.91666x2}T}] 

10ot1 - exp{-0.47541x 100[1 - exp{ -0.65290 100[1 - exp{-0.62589 

exp{0.5x2 - 25x4)}T}] x exp{-8.41326x2}T}] x exp{-6.55996x2}T}J 
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Table 4. Some numerical values (w5 = -1; h = 0.25; a= 1; c varies) 

c p~(%) x p~(%) Error a(%) Plc(%) Error Le(%) 

0.2 20. ' 1.60626 16.46840 -17.658 7.39704 -63.015 
15 2.91416 5.03748 -66.417 3.22938 -78.4 71 
10 3.09318 4.03581 -59.642 2.77294 -72.271 
5 3.30728 3.03807 -39.239 2.28249 -54.350 
1 3.63837 1.88125 88.125 1.64487 64.487 

1 20 1.58317 10.10190 -49.491 13.38560 -33.072 
15 1.69729 8.00607 -46.626 11 .33380 -24.441 
10 1.81546 6.16933 -38.307 9.40445 -5.956 
5 1.96339 4.32792 -13.442 7.29347 45 .869 
1 2.19776 2.31670 131.670 4.65331 365.331 

10 20 0.89438 13.45640 -32.718 19.57970 -2.102 
15 0.94090 11.01840 -26.544 16.89010 12.601 
10 0.99441 8.61734 -13.827 14.07560 40. 756 
5 1.06689 6.01417 20.283 10.76760 115.352 
1 1.18966 3.05551 205.551 6.47990 547.990 

100 20 0.53158 16.61880 -16.906 25.48320 27.416 
15 0.55220 13.98130 -6. 791 22.43460 49.564 
10 0.57704 11.21360 12.136 19.04980 90.498 
5 0.61224 8.02291 60.458 14.83580 196.716 
1 0.67477 4.16017 316.017 9.03707 803.707 

Comments. Numerical results show that: at a specific level of Pd, the influence 
of nonlinearity over the extreme response X(t) is similar to the example 1. At 
c = 0.2 (weakly nonlinearity) a maximum value of Pd exists: Max(pd) ~ 25% 
at x ~ 2.4. Errorc and Error LG both are higher than that of the case w6 = 1 
respectively. For weakly nonlinearity c = 0.2 and strong nonlinearity c = 100, p~ 
is generally better than Pla; for medium nonlinearity c = 1-10 one gets Pia more 
improved than p~ at larger values of Pt and the contrary. 

Example 3. Consider the oscillator of nonlinear stiffness and damping with 
Gaussian white noise excitation: 

( 
j;2 x2 x4) 

x+4h -+w5- +c- x+w5x+cx3 =aw(t). 
2 2 4 

(3.5) 

Similarly, the calculation procedures to obtain the mean up-crossing rates (EMCR 
and AMCR) to be done in [12]. The results are: 
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00 

I . { 4h ( 1 2 w6 2 c 4 ) 
2

} x exp - a 2 2 x + T x + 4 x dx 

Ve(x) = ~ 00 (3.6) 

I I { 4h ( 1 2 w6 2 c 4 ) 
2

} 4 exp - a 2 2 x + T x + 4 x dxdx 

0 0 

Using (2.5), one receives the formula for estimation of the exact exceedance prob
ability Pd. The formulas for calculation of the AMCRs of Caughey and LOMSEC 
are quite the same as the above Duffing example (3.3), (3.4). (2.9) is used for 
estimating the approximate exceedance probability p~ and Pie· 

The terminal expressions corresponding with the specific value of the param
eters are given in table 5. Fig 9 - 10 show the EEP and AEPs. Numerical values 
are given in table 6. 

Table 5. Expressions of the exceedance probabilities (w6 = 1; a= 1; h , c varies) 

h, c 

h = 0.1 100[1 - exp{ - 0.11378 100[1 - exp{ - 0.16022 100[1 - exp{ - 0.16072 
00 

c = 0.01 x J xexp{-0.4 x exp{-l.12135x 2}T}] x exp{-0.56990x 2}T}] 
0 

x (0.5±2 + 0.5x2 

+0.0025x4 ) 2 }d±T}] 

h = 1 100[1 - exp{ -0.37257 100[1 - exp{ - 0.16822 100[1 - exp{ -0.16551 
CX) 

c = 0.2 J xexp{-4 x exp{-2.56187x2}T}] x exp{-2.09899x 2}T}] 
0 

x (0.5±2 + 0.5x2 

+ 0.05x4 ) 2 }d±T}] 
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Table 6. Some numerical values (w6 = 1; u = 1; h, e varies) 

~,c Pd(%) x p~(%) Error a(%) P!a(%) Error La(%) 

h = 0.1 21.23780 1.22474 . 8.55215 -59.732 18.54220 -12.693 
c = 0.01 16.07240 1.41421 4.97521 -69.045 14.29290 -11.072 

11.59350 1.58114 2.87103 -75.236 10.95180 -5.535 
5.18161 1.87083 0.94470 -81.768 6.34977 22.544 
1.04236 2.23607 0.17639 -83.078 2.75184 164.001 

h=l 20.28710 0.70711 13.08010 -35.525 15.95710 -21.344 
c = 0.2 14.97660 0.80623 9.10420 -39.211 11.91670 -20.431 

10.40120 0.89443 6.29326 -39.495 8.84557 -14.956 
5.76053 1.00000 3.81913 -33.702 5.90495 2.507 
1.18175 1.18322 1.38778 17.434 2.59441 119.540 

Comments. We also get the rule that at a specific level of Pt , the extreme 
response X(t) reduces .when the nonlinearity increases. In any case of the nonlin
earity we get P!a more improved than p~ at larger and medium values of Pt and 
the contrary at smaller values of Pt. 

Example 4. Consider the oscillator with nonlinear damping following x, x under 
Gaussian white noise excitation, which obtained from (3.5) with c = 0: 

(3.7) 

Similarly, we have: 

1
00

• { 4h (1 ·2 w6 2)
2 }d' xexp - u 2 2x + 2 x x 

Ve (x) = _oo_o_oo _____________ _ 

J J { 4h ( 1 . 2 w5 2) 
2

} . 4 exp - u 2 2x + 2 x dxdx 

(3.8) 

0 0 

The calculation of the AMCRs of Caughey and LOMSEC, plus the exact 
exceedance probability P°t and the approximate exceedance probability p~ , P!a 
are the same as the discussions in example 3. 

The terminal expressions corresponding with specific value of the parameters 
are given in table 7. Fig 11 - 12 show the EEP and AEPs. Numerical values are 
given in table 8. 
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Table. 7. Expressions of the exceedance probabilities (w5 = 1; a= 1; h varies) 

h 

h = 0.25 100[1 - exp{ - 0.17959 100[1 - exp{ -0.15915 100[1 - exp{ -0.15915 
00 

x J ±exp{-(0.5±2 x exp{-x2 }T}] x exp{-0.87058x2 }T}] 
0 

+0.5x2
)

2 }d±T}] 

h=l 100[1 - exp{-0.35917 100[1 - exp{ -0.15915 . 100[1 - exp{ -0.15915 
00 

x J ±exp{-4(0.5±2 x exp{-2x2 }T}] x exp{-1.82862x2 }T}] 
0 

+0.5x 2
)

2 }d±T}] 
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Table. 8. Some numerical values (w5 = 1; a= 1; h varies) 

h x 

h = 0.2'5 20.46300 1.00000 16.10830 -21.281 
14.97600 1.16190 11.64210 -22.262 
10.37180 1.30384 8.35266 -19.468 

18.11980 
13.705507 
10.29890 
6.51164 
2.77993 

-11.451 
-8.484 
-0.703 

5.18964 1.50000 4.90776 
1.02397 1.80278 1.83424 

-5.432 
79.130 

h = 1 20.46250 0.70711 16.10830 -21.279 17.41640 
15. 71080 0.80623 12.20100 -22.340 13.53700 
10.37150 0.921957 8.35266 -19.465 
4.83868 1.07238 4.67 409 -3.402 
1.12292 1.26491 1.92738 71.640 

9.59768 
5.66300 
2.52770 

25.474 
171.485 

-14.886 
-13.836 
-7.461 
17.036 

125.101 

Comments. Comments for this case are the same as for the above in example 3. 
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4. Conclusions 

Through the analysis of the exact exceedance probability of the nonlinear 
systems considered, some important characters of the exceedance probability, es
p~cially the influence of nonlinearity over the exceedance probability are investi
gated: 

• It is obvious that the exceedance probability is generally a contra-variant 
function versus the extreme response (p+ goes down when X(t) increases). 
However it is a type of system whose exceedance probability contains a max
imum-peak at a value of the extreme response X(t); which is not as small as 
the case of Duffing with w6 = -1. 

• At a specified level of p+, the extreme response X(t) reduces when the non
linearity increases; in other words, the nonlinearity effect causes a reduction 
of the exceedance probability. 
The obtained result sJiows the applied possibility of the proposed linearization 

techniques for estimating the approximate exceedance probability: 
• In a specified large domain of p+, it is usually to get p !a more improved than 

Pb· When p+ goes down at a specified smaller value, both Pb and Pia have 
rather high relative errors though the absolute errors are not so high, however 
one gets Pb better than Pia· 

• The influence of the nonlinearity effect over the degree of accuracy of the 
. approximate exceedance probability Pb and Pia is rather complicated and 
in general it is only possible to obtain individual answers for each type of 
system. 
In short, according to design purposes (p+ required is large or small) as well 

as basing upon each specific system, we apply either the Caughey or the LOMSEC 
for estimating the approximate exceedance probability. 

The results and comments in this paper are supplementary to the previous 
researches on the approximate exceedance probability through the linearization 
using the Caughey. Further more, this is the first research conducted on the anal
ysis of the approximate exceedance probability using the LOMSEC linearization. 
The above tendency of research can be enlarged for other nonlinear systems to aim 
at discovering more natures of the exceedance probability. The expansion also <:an 
be used for multi-degree of freedom randomly nonlinear systems. 
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PHAN TiCH xAc su.AT VUQT CUA DAP UNG CHUYEN v~ 
CUA cAc c.Au TR0c PHI TUYEN NGAU NHIEN 

Bai bao trlnh bay vi~c tfnh toan xac suat vrrgt chfnh xac cti.a cac dap ling 
m{>t so h~ phi tuyen ngiu nhien ch!u kkh d{>ng on tr~ng ma c6 ham m~t d9 xac 
suat chfnh xac c6 th~ tlm drrgc. Tiep theo, cac xac suat vtrgt gan dung dtrgc xac 
d!nh tren ca s& phan tfch cac h~ tuyen tfnh h6a trrong drrong dung phtrang phap 
Caughey truy'en thong va "tieu chu~n sai so blnh phrrong trung blnh khu V'fC" 
(LOMSEC) . Cac so sanh xac suat vrrqt gan dung doi v&i xac suat Vll'qt chfnh xac 
dtrgc drra ra. Ket qua nh~n drrgc cho ra m{>t s6 tfnh chat quan tr9ng cua xac suat 
vm;rt, cinh hrr&ng cua tfnh phi tuyen d6i v&i xac suat vm;rt. Vi~c danh gia kha 
nang ap dvng cac tieu chufu tuyen tfnh h6a Caughey va LOMSEC dg tfnh xac 
suat Vlfqt gan dung drrgc th\l'C hi~n. 
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