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1. Model of multiple cracked beam 

Model of crack was studied by many authors. Adams R. D. and Cawley P. in 
1978 have proposed an axial spring model [1] to investigate the problem of location of 
crack in a bar using natural frequencies and mode shape. However, in [1] the stiffness 
of the equivalent spring has not been calculated from the crack depth. The formula 
relating the spring stiffness and crack depth has been established due to study of 
Ju and others [2] in 1982. Subsequent studies by Haisty B. S. and Springer W. T . 
[3] and Dimaroganas A. D. and Chondros T . G. [4] have made a great progress in 
improvement of the formula. In this paper the rotational spring model of transverse 
crack in beam developed in studies of Dimaroganas A. D. and his coworkers is 
adopted and used for solving the crack detection problem. The beam with single 
transverse crack has been studied in a lot of publications [5, 6]. Less amount of 
works [7, 8] devoted to the case of multiple cracked beam, especially to the problem 
of multi crack detection. Following our study in [8] concerned the multiple cracked 
beam, the problem of multi crack detection using static displacements measured in 
a beam is considered in the present paper. The theoretical investigation will be 
illustrated by a numerical example for a cant ilever beam with two and three cracks. 

Thus, a crack of the depth a at the position x* (Figure l.a) , following to the [4] 
may be modeled as a rotational spring of stiffness 

where 

1 
K=- · 

' Q' 

= 67r(l - v
2
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a EI c h ' 
·. z 

Ic(z) = 0.6272z2 
- l.04533z3 + 4.5948z4 

- 9.973z5 + 20.2948z6 
- 33.0351z7 

(1.1) 

+- 47.1063z8 
- 40.7556z9 + 19.6z10

, (1.2) 

which is determined experimentally. Therefore, a beam with n cracks of depth aj 

at Xj , j = 1, .. . , n can be modeled as shown in Figure l.b. 
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Fig.1 

2. Static response of multiple cracked beam 

Let us consider the beam in bending only, described by the equation: 

d4 <I>( x) 
Elz dx4 = q(x) , (2.1) 

where <I>(x) is the flexural displacement of the beam at section x and q(x) is a 
distributed load Introduce the notations 

U1 = <I>(O) ; U2 = <I>'(O); U3 = <I>(L) ; U4 = <I>'(L). (2.2) 

which is the generalized displacement of the beam and represents vector of degree 
of freedom U = {U1, U2, U3, U4}T and 

P1 = Elz<I>"'(O) ; P2 = -Elz<I>"(O); P3 = -Elz<I>"'(L); P4 = Elz<I>"(L) (2.3) 

being a vector of the end forces. These displacements and forces are shown in Figure 
2. 

Fig. 2 

For displacements and forces at the section x j, j = 1, ... , n one uses the notations 

{ z-(j)} = { ZJ:(j) , z2(j) , Z3(j) , Z4(j)} 

{ z+(j)} = { zt(j), zt(j) , zt(j), zt(j) }; j = 1, 2, . .. , n 
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zt(j) = q:,(xj ± O); Zi(j) = q:,'(xj ± O); zt(j) = ±Efzq:,"'(xj ± O) ; zt(j) = 
~Efzq:,"(xj ± 0), and letting x0 = 0, Xn+l =Lone will have also 

zt(O) = q:,(o) = U1; Zi(O) = q:,'(O) = U2; zt(o) = Ef2q:,"'(O) = P1; zt(O) = 
-EJ2q:,"(O) = P2; 

Z1(n+ 1) = q:,(£) = U3 ; Z2(n+ 1) = q:,'(L) = U4; Z3(n+ 1) = -Efzq:,"'(L) = 
?3; Z4(n + 1) = Elz¢/'(L) = P4. 

On the other hand, general solution of equation (2.1) for x E (x1_ 1, xj), 
j = 1, 2, ... , n + 1 can be represented as 

x 

q:,(x) = q:,o(x) + 6~1z j (x - T) 3q(x1_1 + T)dT ; x E [x1_1, x1]; x = x - x1_1 
0 

(2 .4) 

where 

x3 x2 
q:,o(x) = Z{(j - .1) + xZi(j - 1) + 6Efz zt(j - 1) - 2Elz zt(j - 1), x = x - Xj - 1· 

Furthermore, introducing the functions 

0 0 

7J1 (fj) = 6~Jz J (fj - T) 3q(Xj-1 + T)dT, q3 (fj) = - J q(Xj-1 + T)dT, 

0 0 

0 0 

q2(fj) = -
1-f (ej - T) 2q(xj-l + T)dT, q4(fj ) = f (ej - T)q(xj -1 + T)dT 

2Elz 
0 0 

one will have a vector of generalized load 

Following the method of transfer matrix [8] one gets 

(2.5) 

where the matrix Q is of the form 

Q = Tn+1Q(n)Q(n - 1) ... Q(l) = Tn+llnTnln-l .. · l2T2l1T1 (2.6) 

with Q(j) = JjTj and 

f~/6Efz 
fJ/2Eiz 

-1 
.ej 

-e;/2Eiz) 
-£1/Elz . _ .. _ 

O , fj - Xj - Xj-l, J - 1, . . . , n + 1, 

-1 

(2.7) 
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0 0 

J; = J(cx;) = (~ ~i 1 0 · =67r(l-v2)h (aj) J • j = 1, .. . ,n; 0 -1 0 ' a1 Eiz le h . 

0 0 -1 

(2.8) 

The vector { F } is calculated by the formula: 

{ F} = q(n + 1) + Tn+1ln7j(n) + Tn+1lnTnln-17j(n - 1) + 
+ Tn+lJnTnln-1Tn- 1ln-27j(n - 2) + · · · + Tn+llnTn ... hT2J17j(l). (2 .9) 

Writing the matrix [Q] into the form Q = (~~ ~~), where 

and using the notations introduced above, we have from (2.5) 

that can be written in the matrix form , 

K{U} = {P} + G{F}, (2.10) 

where 

(2.11) 

K is the stiffness matrix and { F} = G{ P} is vector of generalized load. Suppose 
furthermore that the boundary conditions are linear of the form 

(2.12) 

where 

cl BP2 0 

JL} C' 
BP4 0 

JL} Bu= Bt Bg2 0 
Bp= Bg3 Bg4 0 

0 Bf1 0 0 Bf3 12 14 
0 B~i Bf2 0 0 Bf3 Bf4 

(2.13) 

then (2.10) can be rewritten as 

Ku{U} + Kp{P} = -{ F} (2.14) 
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with 

(2.15) 

Finally, equations (2.12) and (2.14) must be solved together, so they form a system 

K{U} = -{P}, (2.16) 

where 

Solving equation (2.16) gives as vector of generalized displacements, as well as 
the vector of friction end forces or in fact the state vectors {Z+(o)}, {Z-(n + l)}. 
Using the result obtained one can determine fully the field of displacement , slope, 
bending moment and shear force: 

Here 

{z+(j)} = Q(J){z+(j - 1)} + Jjfq(fj)}, j = 1, . .. 'n; 

{Z(x )} = [Tj(,\ x)]{z+(j - 1)} + {q(x)} . x - xj-l· 
(2.18) 

{Z(x)} = {Z1(x) , Z2(x) , Zs(x), Z4(x)}T = {<I>(x), <I>'(x), -Elz<I>"'(x), Elz<I>"(x)}T . 
(2.19) 

Let 's consider a cantilever beam loaded by a force F applied to the free end. In 
the case of uncracked beam one has 

Fx3 FLx2 
<I>&'(x) = - 6Elz + 2Elz ; 

FL3 

Us= <I>&'(L) = - 3Elz; <I>'F(L) = - FL2 . 
0 2Elz 

(2.20) 

For cantilever beam with cracks at positions {xj;j = 1, 2, .. . , n} and with depth 
{ aj ; j = 1, 2, . . . , n} , the given load F leads to the field of displacement 

<I>(x) = 

Fx3 FLx2 
<I>o(x) = <I>[(x) = - 6Elz + 2Elz 

<I>1(c) = <I>[(x) - Fa1(x - x1)(L - x1) 

n 

<I>n(x) = <I>{{(x) - L Faj(x - Xj)(L - Xj) for Xn:::; x:::; L. 
j=l 

In particular, at free end x = L the displacement and slope are 
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(2.22) 

Comparing (2.22) and (2.20), one can obtain the factors representing amplification 
due to cracks of displacement and slope as follow 

(2.23) 

Analogously, in the case of uniformly distributed load q, the displacement field can 
be found in the form 

<I>(x) = 

<I>o(x) 

<I>1(x) 

<I>2(x) 

qx4 qLx3 qL2x2 

= <I>Z(x) = - 24E!z + 6Elz - 4Elz for O :S x :S Xi 

= <I>6(x) - q;1 (x - X1)(L - X1) 2 for X1 :S x :S X2 

= <I>6(x) - q;1 (x - X1)(L - X1)2 

-q;2 (x - X2)(L - x2)2 for X2 :S x :S X3 
(2.24) 

In this case the amplification factors for displacement and slope at the free end have 
the analogous to the (2.23) form 

q _ [ 4Eiz ~ ( )3] . A3 - 1 + £4 ~ a1 L- x1 , (2.25) 
j=l 

3. Crack detection by using static displacement 

In this section the problem of crack detection for a cantilever beam by displace­
ment measured at various positions under static load applied to the free end is 
studied. To identify the crack parameters {.X1} = {a1,x1}, j = 1, ... ,nit is neces­
sary to measure displacements at 2n points. Moreover, the function-displacement 
as shown in (2.21) can be calculated at a point if amount of the cracks on the left 
of the point is known. This fact constrains one to assume that measurement points 
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must be distributed as shown in Figure 3. It means that the measurement points are 
coupled ( Uj , ui+1), j = 1, ... , n, no crack exists between the points in the pair and in 
the interval between the pairs there is only single crack. In practice the assumption 
is not much strict , because one can choose the measurement points mesh freely . 

• a1 G2 a,, 

X2 x,, p 

x=L 

U1 li2 

<P1 <P2 

<P,,_, <P,, 
Fig. 3 

Thus, it is supposed that the static displacements measured at the chosen mesh 
(u1 , Uz , .. . , Uzn-1 , Uzn) are (<I>1, <I>2, ... , <I>2n-1, <I>2n)· We Introduce the function of 
crack parameters)..= {a1,X1 , a2 , x2 , ... ,an,Xn}: 

J(,>..) = J(a1 , X1 , a2,X2, ... ,an,Xn) = 

= J<I>1 + Fa1(u1 - x1)(L- x1)J
2 

+ J<I>2 + Fa1(u2 - x1)(L - x1)J
2 

+ · · · + 
n 

+ J<I>2n-1 + L Faj(Uzn-l - x1)(L - x1)J
2 

j=l 
n 

+ J<I>2n + L Fa1(U2n - Xj)(L - Xj)j
2
. 

j=l 

- F <Pk= <Pk - <I>0 (uk), k = 1, 2, ... , 2n. 

The arguments of the function (3.1) are constrained by 

0 ::; X1 ::; U1 < Uz ::; Xz ::; U3 ::; u . .. ::; Xn ::; Uzn-1 < Uzn ::; L 

(3.1) 

0 ::; ai < h; j = 1, 2, ... , n (3.2) 

where 

. = 67r(l - v
2
)h1 (aj) 

a 1 EI c h , j = 1, 2, ... , n; 
z 

Ic(z) = 0.6272z2 
- l.04533z3 + 4.5948z4 

- 9.973z5 + 20.2948z6 
- 33.0351z7 

+ 47.1063z8 
- 40.7556z9 + 19.6z10

. 

The diagnosis problem now can be formulated as a nonlinear programming problem 
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f(>.) ---+min 

G j ( >.) = O; j = 1, 2, ... , me 

G j ( >.) ::; 0; j = me + 1, . .. , m 

Aeb ::; ).. ::; Aub 

(3.3) 

For solving the problem (3.3), algorithms given in MATLAB [10] can be used and 
in result one obtains crack position Xj and crack depth aj . Input for the algorithm 
is static displacements measured at various points along the beam. 

4. Numerical example and discussion 

To illustrate the procedure proposed for crack detection, a cantilever beam with 
following properties is studied . 

The length L = 3 m, cross section area A = 0.2m x 0.2m, Young's Modulus 
E = 2.1·1011 N/ m 2

, the force applied to free end P = 3kN. 
Let's consider four scenarios of cracked beam as follow, the first scenario (Sl) 

is the case of two cracks (at positions 1 m and 2 m from the fixed end of beam 
with depth of 0.06 m and 0.04 m respectively) and in the diagnosis problem only 
two cracks are sought . In this case the influence of the measurement noise on the 
diagnosis result is studied. The subsequence three cases under consideration are 
shown in Table 1. 

Table 1 

S2 (two cracks) S 3 (three cracks) S4 (three cracks) 
Scenario 

1 stcr. 2ndcr. 3rdcr. istcr. 2ndcr. 3rdcr. istcr. 2ndcr. 3rdcr. 

Crack 
lm l.5m 2.0m lm l.5m 2.0m l.Om l.5m 2.0m 

Position 

Crack 
0.0m 0.04m 0.06m 0.02m 0.04m 0.06m 0.02m 0.04m 0.06m 

depth 

In the case of scenario S1 the measurement points mesh is u 1 = 1.5 m, u2 = 1.8 m, 
u3 = 2.1 m, u4 = 2.4 m, u5 = 2.6 m, u6 = 2.8 m. For the scenarios 82 , 83 the 
measurements are made at the positions u 1 = 1.2 m, u2 = 1.4 m, u3 = 1.6 m, 
u4 = 1.8 m, u 5 """' 2.2 m, Us = 2.6 m and for the last case, u1 = 1.2 m, u2 = 1.4 m, 
u 3 :::;:;:: 1.5 m, u4 = 1.8 m , u5 = 2.2 m, u6 = 2.6 m. It is necessary to note here that, in 
the second case (82 in table 1) only two cracks are presented, but in the diagnosis 
problem three cracks are sought. Of course, among the cracks one must be of zero 
depth. This case is considered to test the detection of zero depth crack. The last 
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scenario (S4 ) is carried out for testing the case when measurement point is identical 
to the crack position. 

The result of crack detection for the case of first scenario 51 for different levels 
of measurement error, which has been introduced by addition of the term E.rand, 
to the input of the crack detection program is given in Table 2. Here, c = 0.0; 
0.01 ; . .. ; 0.1 corresponding to the 03, 13, 23 , ... , 103 of measurement error and 
rand is a random number uniformly distributed in the interval (0, 1) . The cracks 
parameters detected in the three last scenarios are shown in Table 3. 

Table 2 

E 03 13 23 33 43 53 63 103 --
Xi 0.9998 0.9747 0.9540 0.9363 0.9216 0.9089 0.8979 0.8652 
ai 0.0600 0.0625 0.0649 0.0671 0.0692 0.0713 0.0732 0.0800 
X2 1.9995 1.9979 1.9969 1.9941 1.9937 1.9921 1.9907 1.9875 
a2 0.0400 0.0420 0.0439 0.0457 0.0474 0.0490 0.0505 0.0562 

actual crack parameters: x1 = 1.0, a 1 = 0.06, x2 = 2.0, a2 = 0.04 

Table 3 

52 (two cracks) S3 (three cracks) S4 (three cracks) 
Scenario 

istcr . 2ndcr. 3rdcr. 1 stcr. 2ndcr. 3rdcr. istcr. 2ndcr. 3rdcr. 

Position 0.800 1.5002 1.9999 1.0094 1.5013 2.001 1.002 1.499 2.0 
depth 0.0005 0.0400 0.0600 0.0203 0.0400 0.0599 0.02 0.0399 0.06 

5. Conclusion 
In this paper the following results are presented: 
1. General solution for static displacement of multiple cracked beam subjected 

to concentrated as well as distributed load is obtained in an analytical form. 
2. The problem for crack detection of multiple cracked cantilever by measure­

ments of static displacement has been formulated in a form of the constrained non­
linear programming, that may be solved by using MATLAB code. 

3. An example has been investigated numerically to validate the developed herein 
theory. Different scenarios of cracks have been arranged and in each case the crack 
detection was tried. Results of detection given in Table 2, 3 show acceptability of 
the procedure proposed. 

This work has been completed under support of the National Council in Natural 
Science of Vietnam. 
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CHAN DOAN TINH DAM CO NHIEU VET NUT 

Trong bai bao nay cac tac gia trlnh bay m()t thu~t toan chan doan nhieu vet nut 
trong dam bang phucmg phap do d<? v6ng tinh. Vi~c cha'.n doan nay dva tren CCY 
s& ket qua nghien cuu phan ung cua dam c6 nhieu vet nut doi v&i tai trc;mg ngoai, 
ma trong tru&ng hqp tai tr9ng tinh cho ket qua giai tich. Thu~t toan nay duqc 
minh hQa bang m()t vi dl}. so, trong do xem xet thu nghi~m nhieu phuang an vet 
nut khac nhau. Dii nghien cuu hh htrc'Yng cD.a sai so do dl?-C den ket qua chan doan. 
Xet trtr&ng hqp cha'.n doan vet nut 6 d9 sau bang kh6ng (nghia la kh6ng co nut) 
va thu nghi~m trtr&ng hqp diem do trung v&i vt tri vet nut. Cac ket qua cho thay 
thu~t toan nay cod<? chinh xac va tinh on cttnh chap nh~n duqc. 
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