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ABSTRACT. In this paper, the following matters are presented: the adjoint problem 
of the two-dimensional matter propagation problem; the algorithm for determination of a 
domain in which a plant can be located so that the values of the pollution-level reflecting 
functional does not exceed a given value at considered sensitive areas; application of this 
algorithm for numerical experiments to a typical problem. 

1. Equation of the suspended matter propagation and its adjoint 
equation (see [ 1]) 

The equation of the suspended matter propagation, i.e. the matter transport 
and diffusion equation in the horizontal 2D case has the following form: 

ac ac ac 
at+ u ax + v ay +<JC= f + 1!:::,.C, (x, y) E G, 0:::; t :::; T (1.1) 

with the initial and boundary conditions: 

acl =O an r + ' 
(1.2) 

where x, y, t are the space and time variables; C is the matter concentration; <J is 
the decay coefficient; f is the source intensity; I is the diffusion coefficient; u , v are 
respectively velocity components in the x and y directions, and satisfy the following
equation: 

au av - 0 
ax+ ay - ' (1.3) 

r = r+ + r - with r + is the boundary part , at which Un 2:: O; r- is the boundary 

part at which Un < O; !::::,. = a
2 

+ a
2 

-Laplace operator; Un is the projection of the 
' ax2 ay2 

velocity on the external normal vector n. 
Using (1.3), the equation (1.1) can be rewritten as follows: 

ac auc ave 
- + -+-+<JC= f +1!:::,.C. 8t ax ay 
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Solution of the equation (1.1) may be determined under the form: C = C1 + C2 
where, C1 and C2 are the ~olutions of the following equation: 

with the initial and boundary conditions: 

and 

with the initial and boundary conditions: 

0C1 I = 0 on r+ 

0C2' = O. on r + 

(1.5) 

(1.6) 

(1.7) 

We now establish the adjoint equation of the equation (1.6) . By multiplying 
both sides of the equation (1.6) by a some function C2 and integrating the equation 
obtained on the area G x [O, T] , we get : 

T T 

j dt j c; 0~2 dG + j dt j C2div(uC2 )dG 

0 G 0 G 

T T T 

+ J dt J a-C2C2dG - 1 J dt J c;~C2dG = j dt J C2fdG. (1.8) 
0 G 0 G 0 G 

Let I = const , using the partial integration technique, the Green formula and 
the condition (1.3) , we have: 

T T 

J dt J c; 0~2 dG = J c;c2l~dG- J dt J C2 °~2 dc , 
O G G 0 G 

t T T . J dt J c;div(uC2)dG = J dt J UnC;C2df - J dt J C2div(uC2)dG, 
. o G 0 r 0 G 

T T T 

I J dt J c;~C2dG =I J dt J ( c; 00~2 - C2 °o;)dr +I J dt J C2~C2dG. 
O G 0 r 0 G 
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Putting these expressions into (1.8), one deduces: 

T 

j dt j c2 ( - o~; - div(uC;) + ac; - ,~c; )dG = 
0 G 

T T 

= j dt j c;JdG - j c;c2lt=TdG + j c;c2lt=odG - j dt j unC2C;dr 
0 G G G 0 r 

T 

J J ( *ac2 ac;) + I dt C2 on - C2 on dr. 
o r 

Let the function C2 satisfy the following equation: 

ac; d" ( ... C*) C* "C* -at - IV U 2 + O" 2 - /il 2 = p. 

From the initial and the boundary conditions (1.7) , one yields; 

J C2C; lt=OdG = 0, 
G 

T T 

j dt j unC2C;dr = j dt j unC2C;dr, 
o r o r+ 

T T T 

(1.9) 

(1.10) 

J J ( * ac2 ac;) j j ( ac;) j j * ac2 I dt C2 an - C2 an dr = I dt - C2 an dr + / dt C2 an dr. 
o r o r+ o r-

From the above expressions and (1.10) , the equation (1.9) can be rewritten under 
the form: 

T T J dt J pC2dG = J dt J JC;dG + J C2C;lt=TdG 
0 G 0 G G 

T T 

+ / J dt J c; ~~2 
dr - J dt J C2 (! aa; + unC;) dr. ( 1.11) 

o r- o r+ 

Let the initial and boundary conditions of the equation (1.10) be chosen as 
follows: 

c; lt=T = 0, c; Ir- = 0, (I 
0Zi2 + unc;) Ir+ = 0. (1.12) 
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Then, from (1.11) and (1.12) we get the dual form: 

T T 

j dt j pC2dG = j dt j JC;dG. (1.13) 
0 G 0 G 

It is easy to verify that the problem (1.10), (1.12) is the adjoint problem of the (1.6), 
(1.7). Indeed, with the notation: 

a au· av- a au- av· 
A= - + - + - + (]' - /~ A* = -- - - - - + (]' - 1~ at ax ay at ax ay , 

we have: 

AC2 = f, A*C; = p, 
T T 

(AC2, C;) = (f, c;) = J dt J JC; de= J dt J pC2dG = (C2 ,p) = (C2, A*C;). 
0 G 0 G . 

Use of the variable transformation t 1 = T - t, the equation (1.10) becomes: 

ac2 d. 1-+C*) C* AC* -8 - lV\U 2 + O' 2 - /LJ. 2 = p, 
t1 

(1.14) 

c; lt1=0 = 0, c; Ir- = 0, (I aa~2 + unc;) Ir+ = 0. 

For simplicity, by using (1.3), we obtain an another form of the adjoint equation 
(1.14): 

ac2 ac2 ac2 * * - -u- -v-+O'C -1~C = p. 
8t1 Bx By 2 2 (1.15) 

2. Pollution-level reflecting functionals (see [1]) 

Assume that the suspended matter concentration C is calculated from the equa
tion ( 1.1) . We consider the following functionals: 

a. The time-averaged amount of the matter concentration C on a sensitive area 
1 T 

Gk c G for the period T: Jf = T f dt f CdG. 
0 Gk 

T 

b. The total amount of settling matter in the same area Gk C G: Jf = J dt J aCdG, 
0 Gk 

where, the constant a represents portion of matter which settles down, that are 
mainly the heavy matters and partly the suspended matters settling down by down
ward diffusion. 
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c. Generalized functional: 

T 

Jk = J dt J pCdG 

0 Gk 
{ 

1 
-+a 

where p = T ' 
0, 

(x , y) E Gk 

(x, y) ¢Gk 
(2.1) 

and pis a function referring to the economic, sanitary, ecological, health standards 
and so on. 

d. Global functional: 

T 

Yp = j dt j pCdG where, 

O G 

(x , y) E Gk, k = 1, 2, .. . , m 
m 

(x , y) ¢ U Gk · 
k= l 

3. Optimization problem of plant location (see [1]) 

LetGk (k = 1, 2, .. . , m) be considered areas, recreation zones or other environ
mentally sensitive areas on the region G. Our problem is to determine the domain 
Ok c G so that the pollution matter from a plant located in this domain nk satisfies 
the following condition for the sensitive area Gk: 

T 

Yk = j dt j pCdG::; ck , 

0 Gk 

and ck is a given figure. 

{ 

1 
-+ak 

where p= T ' 
0, 

(x, y) E Gk 

(x, y) ¢Gk 
(3.1) 

If the determination of domain Dk is impossible on the G, the reduction of rate of 
the pollution emission Q, will make the determination of the plant location possible. 

Assume that on the region G there are m sensitive areas Gk (k = 1, .. . , m) and 
the source of matter emission is located at a point r0 = (x0 , y0 ). Then, the source 
intensity can be described by the function: J(x, y) = Q8(r - r 0 ), Q = const 

{
oo, r = ro 

where, 8(r) = is Dirac function, and from (1.1), we get: 
. 0, r =fro 

8C aC aC 
at + u ax + v oy + aC = Q8(r - ro) + 1D.C 

acl with the conditions: Clt=O = c0
, Cir- = r.p , on r + = 0. 

In order to determine the domain 0, in which the plant can be located so that 
in all sensitive areas Gk, the generalized functional Yk satisfies the condition (3.1), 
we do as follows: 
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a. Calculation of concentration C from the equation (1.5): 

ac ac ac -- + u- + v- + CJC = 1llC at ax ay 

with the initial and boundary conditions Clt=O = C0
, Cir- = cp, 

T 

and generalized functional (2.1): Jk = J dt J pCdG =ck. 
0 Gk 

b. Solving m adjoint equations: 

acio oCio acio * * -- -u-- - v-- + CJC - 1/:j,_C =pk ot1 ox By k k 

where, Pk= { ~ + ak, 
0, 

(x, y) E Gk with the conditions: 
(x , y) ti Gk 

c; lt1=0 = 0, c; Ir- = 0, ( v aa~k +Un CZ) Ir+ = 0, 

we obtain the solutions Ci. (k = 1, 2, ... , m). 
From the dual form (1.13), we get: 

T T 

Yk* = j dt j PkCdG = j dt j Q8(r - ro)CZdG 

0 G 0 G 
T T 

= J QCZ(ro, t)dt = J QCZ(ro, T - t1)dt1 
0 0 

which must satisfy the condition: Yt :::; Ck - Ck =ck . 
T 

Now we consider the function: Yk*(r) = Q J Cio(r, t)dt and draw the iso-grams of 
0 

Yk*(r) =Const. Then, nk in which the functional Yk*(r) :::; Ck are found out. If there 
is perchance no area nk inside G, it may be re-established anyway by reducing the 
discharge intensity Q. 

rn 

c. Overlaying all the areas nk (k = 1, . .. , m), we obtain the domain n, (0 = n Ok)· 
k=l 

n will be the domain in which the plant can be located so that pollution standards 
will be met in all the areas Gk C G, (k = 1, 2, . .. , m) . 

4. Algorithm (see [2)-[4]) 
The equation (1.5) and the adjoint equation (1.15) may be rewritten in a common 

form: 
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ac AC=f at + 

a a2 
(J a a2 (J 

where, A = A1 + A2, A1 = ±u-
8 

- 1
8
.. 

2 
+ - , A2 = ±v-

8 
- 1

8 2 
+ - · 

(4.1) 

x x 2 y y 2 
Equation ( 4.1) is solved by the method of the directional decomposition (splitting 

method): 

Ck+l Ck . 
d; + A[eck+l + (1- B)Ck] = fk+l 

or (I+ dtBA)ck+i = [I - dt(l - B)A]Ck + dtfk+l, 

where 0 :'.S e :'.S 1, I is the unique operator. 
Using approximation: 

from (4.2), one deduces: 

The computational process contains two steps: 

(I+ dtBA 1 )Ck+1!2 = [I - dt(l - B)A]Ck + dtfk+ 1 

(I+ dtBA2)Ck+1 = Ck+1!2. 

a. Discretizing the equation ( 4.3) by an implicit finite difference scheme: 

( ± u + lul)k+112 (Ck+1/2 - cH1/2) 
A ck+1;2 = m,n m,n m - 1,n 

1 
2 ~x 

(4.2) 

(4.3) 

(4.4) 

( ± u _ lul)k+i/2 (cH1;2 _ ck+1/2) (cH1;2 _ 2ck+112 + ck+1/2) 
m,n m+l,n m,n m+l,n m,n m-1 ,n + (]' 

+ ---2--'--- ~x - 1 ~x2 2 ' 
ACk = ±uk+1/2 ( C~+1,n - C~-1,n) C~+1,n - 2C~,n + C~-1,n 

m,n 2~X - I ~x2 

± k+i/2 ( C~,n+1 - C~,n-1) _ C~,n+1 - 2C~,n + C~,n-1 + (J 

Vm,n 2~Y I ~y2 

we obtain: 

Ck+1/2 + b ck+1/2 + ck+112 = d am m+l,n m m,n Cm m-1,n ffi) (4.5) 
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where, 

( ± u - lul):~~12Bdt 1 edt 
am= ---

2~x (~x)2' 

I lk+l/2 
b _ () u m,n dt 1Bdt udt 

m - 1 + ~x + 2 ( ~x )2 + 2 ' 

( ± u + lul):~~128dt 'YOdt 
c -- ---

m - 2~x (~x) 2 ' dm = dtf!~n1 +[I - dt(l - e)AJC!,n· 

It is easy to verify that: bm > 0, am < 0, Cm < 0 and lbml 2 laml + lcml + 8, 
8 > 0. 

So, the linear equation system (4.5) has the unique solution and the computa
tional error of the following double sweep method 

Ck+1 L ck+1 K m,n = m m+l,n + m, ( 4.6) 

h 
-am dm - CmKm-1 

w ere, Lm = b L , Km= b L , is not accumulated (see [5]). 
m + Cm m-1 m + Cm m-1 · 

b. Discretizing the equation ( 4.4) by a difference scheme: 

( ± +I l)k+I ( k+I k+1 ) ( ± - I l)k+1 ( k+1 k+1 A
2
ck+1 = v v m,n Cm,n - Cm,n-1 + v v m,n Cm,n+1 - Cm,n) 

2 ~y 2 ~y 

(ck+1 2ck+1 ck+l ) 
_ m ,n+l - m,n + m,n-1 + ~ck+l 

l ~y2 2 m,n 

we also get: 

- ck+1 -b ck+l - ck+1 d-
an m ,n+l + n m,n + Cn m,n-l = n> (4.7) 

where, 

( ± v - lvl):~~edt 1edt 
am= 2~y - (~y)2 ' 

I lk+l 
- () v m,n dt 'Yedt dfo 
bm = 1 + ~Y + 2 (~y) 2 + 2, 

_ ( ± v + l v l):~~dt 1 edt 
Cm= - 2~y - (~y)2 ' d- = c k+ 112 

m m,n · 

Obviously: bm > 0, am < 0, cm < 0 and lbml 2 liiml + icml + 8, 8 > 0. 
Also, the equation system ( 4. 7) has the unique solution and the double sweep 

method (4.6) does not produce an accumulated computational error. 

5. Numerical experiments 
The mentioned-above algorithm is applied to solve the following optimization 

problem of plant location: 
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- The computed rectangular region G = 1000 m x 1000 m is covered by a uniform 
grid 51 x 51 with spacing steps: dx = 20 m, dy = 20 m. 

- A constant velocity field (u ,v): u = 0.5m/s, v = -0.5m/s. 
- Diffusion coefficient : '"Y = 0.5 m2 /s. 
- Decay coefficient: a = 0.0005 s-1. 

- Time step: dt = 5 s. 
- Time simulation: T = 20000 s. 
- 3 considered sensitive rectangular areas Gk inside G (k = 1, 2, 3) with the 

left-bottom corner coordinates and the right-top corner coordinates are as follows: 
+G1 = [(24.5 , 8.5) , (25.5, 9.5)], +G2 = [(37.5, 12.5) , (39.5, 14.5)], 
+G3 = [(29.5, 33.5), (30.5, 34.5)] . 
~ Standard concentration: ck = 10 mg/ l ( k = 1, 2, 3) . 
The numerical results are illustrated in Fig. 1. In this figure, the ~gure on the 

LEGEN D 

45. 0 0 j: :::~: ~: H Land 

- P lant c an 't be l oc ate 

c=I P lant c an oa located 

40. 00 
.. Sens iti v e Ar'i/a 

3 5 . 00 

3 0 . 00 

15.00 

1 0 . 0 0 

5 . 00 

0 . 00-1-~~..,....-~~..,..-~~..,.-~~..,.-~~.--~~.-~~,-~-,,-~--,~~~ 

0 00 5 . 00 1 0 . 00 15, 0 0 20 . 0 0 2 5 . 00 3 0 . 00 35. 00 4 0 . 00 45. 00 

Fig. 1. Distribution of value of the pollution level-reflecting functionals Yk* for problem 1 

157 



contour lines indicates value of the pollution-level reflecting functionals Yk*. As a 
result, the domain n where the plant can be located so that the sanitary condition 
in the all areas Gk are satisfied (that means Yk* ~ ck) is in white. 
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BAI TOAN 2 cmEu Tor uu xAc mNH ~ TRi NcuoN THAI 

Bai bao trlnh bay cac van de sau: Bai toan lien hc;rp v&i bai toari lan truyen v~t 
· chat 2 chieu. Thu~t toan xac <itnh mien c6 the d~t xi nghi~p sao cho phiem ham 
bieu th! muc d9 6 nhiem khong vuc;rt qua muc d9 cho phep a cac vimg nh~y cam 
quan tam. Da ap d\lllg thu~t toan nay de tinh to;in cho m9t bai toan :mau. 
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