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STABILITY ANALYSIS OF STEEL FRAMES WITH 
SEMIRIGID CONNECTIONS AND SEMIRIGID 

CONNECTIONS WITH RIGIDZONES 

Vu Quoc ANH 

Faculty of Civil Engineering - Ha noi Architectural University 

ABSTRACT. To obtain an accurate insight into the behavior of most realistic steel frames, 
joint flexibility should be allowed for in the analysis since connection flexibility affects both 
force distribution and deformation in beams and columns of the frames. This paper proposes 
a method to establish the geometric stiffness matrix and stiffness matrix for semirigid beam 
element and semirigid beam element with rigidzones. The proposed method can also applied 
to analyse frame stability with rigid, sernirigid and simple connections with rigidzones or 
without rigidzones. In addition, an approach that evaluates the effective lengthµ factor, the 
critical axial load of column in plane frames with rigid, semirigid, and simple connections is 
also presented: 

1. Introduction 

In the majority of civil engineering structures and building, the fabrication of a 
near fully rigid joint is expensive, impractical and economically unjustifiable in most 
cases. In reality, connections in steel frames are mostly semirigid and, consequently, 
the force and bending moment diagrams constructed under the rigid or pinned joined 
assumption contains a considerable error. The design based on these results will also 
lead to an inappropriate sizing of the members. In current engineering practice, the 
determination of the effective length factors of columns must be made in order to 
design semirigid frames to ensure accuracy. A major limitation of the column µ -
factor obtained from current methods is that they are not applicable to frames with 
semirigid connections and semirigid connections with rigidzones, but to perfectly 
rigid or simply connected frames. Therefore, there is a real need for a comprehensive 
and practical approach, preferably classical, for the stability analysis and calculation 
of the effective length µ factor of each column in multistory multibay frames of any 
type of construction. 

In the present paper , the governing equations for determining the column µ - fac­
tor for frames with semirigid connections and semirigid connections with rigidzones 
under various boundary conditions are derived based on the stability of semirigid 
frames. 

The main objective of this paper is to present a stiffness matrix and geometric 
stiffness matrix of beam with semirigid connections and semirigid connections with 
rigidzones. The proposed matrices are applicable to the stability analyses of frames 
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with rigid, semirigid, and simple connections with rigid zones or without rigidzones. 
Recognizing the importance of connection flexibility and its effect on the per­

formance of the structure, in various design codes for steel building such as the 
AISC [6] (1996), Eurocode-3 [7], and British Standard 5950 (1985) [8], the effects 
of joint flexibility are allowed to be accounted for in analysis [3]. The present study 
aims at developing a computer-oriented stability analysis for steel frame with rigid, 
semirigid and simple connect!ons. 

2. The stiffness matrix and geometric stiffness matrix of beam [ke], 
[ku]-Plane Frame 

The linear elastic analysis assumes that the deformations are relatively small, 
and the equilibrium equations can be formulated with respect to initial geometry. 
When increasing applied loads cause significant changes in structure's geometry, the 
equilibrium and compatibility equations are nonlinear and the resulting stiffness ma­
trix contains terms that are functions of axial forces and deformations. The stiffness 
matrix to represent this behavior must include the effect of geometric nonlinearity. 
In addition, for members with flexible connections and rigidzones at the ends, the 
stiffness matrix must be modified to account for the effect of connection flexibility 
and rigidzones. For stability analysis of plane frames with semirigid connections 
and rigidzones, the stiffness matrix and geometric stiffness matrix of beam with 
semirigid connections and semirigid connections with rigidzones will be established. 

The well-known elastic force-displacement relationship [5], Fig. la, for prismatic 
beam without shearing deformation, is: 

f2 EJ 6L 4L2 

[
Ii] [ 12 6£ 

h = L 3 -12 -6£ 
f4 6L 2£2 

-12 
-6L 
12 

-6L if f] x [~i] or, {/} = [ke]{x}. (2.1) 

In the case of a beam element with bending properties in which the deformed 
shape is assumed to be a cubic function due to the rotations x2 and X4 at the 
ends, additional moments f2 and / 4 are developed. From reference [1] the force­
displacement relationship is given by the following equation: 

[
Ji] r 36 3L -36 3L ] [x1] h p 3L 4L2 -3L -L2 

X2 

h = 30L -36 -3L 36 - 3L x X3 

f4 L 3£ - L 2 -3L 4L2 
X4 

or, {/} = [ku]{x}, (2.2) 

where L is length of beam; E - modulus of elasticity; J - moment of inertia; P -
axial force in beam; [ke] - stiffness matrix of beam; [ku] - geometric stiffness matrix 
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of beam; { x} - vector of nodal point displacements of beam; {!} - vector of nodal 
point forces of beam; ·. 

In what follows we emphasize classical buckling analysis, which uses [ka]. One 
begins by applying to the structure a reference level of loading {!}ref and carrying 
out a standard linear static analysis to obtain membrane stresses in elements [1] . 
Hence, we generate a geometric stiffness matrix [ka]ref appropriate to {!}ref· For 
another load level, with >. a scalar multiplier, 

[ka] = >.[ka]ref when {j} = >.{J}ref· (2.3) 

Equations (2.3) imply that multiplying all loads fi in {!}ref by >. also multiplies 
the intensity of the stress field by,\ but does not change the distribution of stresses. 
Then, since external loads do not change during an infinitesimal buckling displace­
ment {dx}, 

([k] + Acr[ka]ref){x} = ([k] + Acr [ka]ref){x + dx} = Acr{f}ref· (2.4) 

Subtraction of the first equation from the second yields: 

([k] + Acr[k,,-]ref){dx} = {O} (2.5) 

Equation (2.5) defines an eigenvalue problem whose lowest eigenvalue Acr is associ­
ated with buckling. The critical or buckling load is, from Eq. (2.3), 

The eigenvector { dx} associated with Acr defines the buckling mode. The mag­
nitude of { dx} is indeterminate. Therefore { dx} identifies shape but not amplitude. 

Critical load calculations that tell nothing about the history of the response of a 
structure to load but that often yield relatively quick estimates of the upper bound 
of resistance of a system can also be useful. And since current steel design standards 
use the effective length factors determined from the critical loads to design columns 

. of frames [2], [VSD]. 

3. To create the stiffness matrix and geometric stiffness matrix of 
beam with semirigid connections [kes], [kas] - Plane frame 

3.1. To create the stiffness matrix of beam with semirigid connections, 
[kes] 

Structural model of beam with semirigid connections, Fig. 1, beam with semirigid 
connections and rigidzones, Fig. 3. 
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where: [kes] stiffness matrix of beam with semirigid connections; { X} vector of nodal 
point displacements of beam with semirigid connections; { F} vector of nodal point 
forces of beam with semirigid connections; e1 , e2 - length of rigidzones (rigid offset) 
of connections; { X *} - vector of nodal point displacements of beam with semirigid 
connections and rigidzones; { F*} - vector of nodal point forces of beam with semi­
rigid connections and rigidzones; k1 ; k2 - spring rotation factor of connections. 

The elastic force deformation relationship, Fig. 1 b, for a prismatic beam with 
semirigid connections, is: 

or , {F} = [kes]{X} . (3.1) 

The equilibrium equations of nodal point forces: 

The first column of matrix [kes] is created as follows 
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Boundary conditions, Fig. le: 

{X} = [X1 X2 X3 X4f = [1 0 0 O]T 

h = - k1x2; f4 = - k2x4; x1 = 1, X3 = 0. 

To impose the boundary condit ions into equations (2.1) that becomes: 

Solving equations (3.2) to find x2 ; x4 : 

-6EJ(2EJ + k2L) x - . 2 - (12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2)L' 
-6EJ(2EJ + k1L) 

x---------------
4 - (12E2 J2 + 4EJk2L + 4Lk1EJ + L2k1k2)L' 

[k11 k21 k31 k41]T = [ke] x [x1 X2 X3 X4f 

l2E J 36E2J 2(2EJ + k2L) + 36E2J2(2EJ + k1L) 
---

L3 L3 (12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2 ) 

6EJ 24E2 J2 (2EJ + k2 L) + 12E 2 J2(2EJ + k1 L) 
---
£2 L 2(12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2) 
l2EJ 36E2 J2(2EJ + k2L) + 36E2 J2 (2EJ + k1L) 

--- +---------------
£3 L3(12E2J2 + 4EJk2L + 4Lk1EJ + L 2k1k2) 

6EJ l2E2J 2(2EJ + k2L) + 24E2J2(2EJ + k1L) 
---
£2 L 2(12E2J2 + 4EJk2L + 4Lk1E J + L2k1k2) 

The second column of matrix [kes] is created as follows 
Boundary conditions, Fig. ld: 

{X} = [X1 X2 X3 X4]T = [O 1 0 O]T 

f2 = ki - kix2; /4 = - k2x4; X1 = 0, X3 = 0. 

6EJ 
£2 

6EJ =-v 
(3.2) 

To impose the boundary conditions into equations (2.1) that becomes: 

(3.3) 
= 0. 
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Solving equations (3.3) to find x2; x4: 

(4EJ + k2L)Lk1 
x = . 2 

(12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2)' 
-2EJLk1 

X4 
= (12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2) ; 

[k12 k22 k32 k42]T = [ke] X [x1 X2 X3 X4jT 

k22 _ EJ [4(4EJ + k2L)k1 - 4EJk1]L 

[

k12] r 6(4EJ + k2L)k1 - 12EJk1 ] 

k32 - L(12E2J 2 + 4EJk2L + 4Lk1EJ + L2k1k2) l-6(4EJ + k2L)k1+12EJk1 
k42 [2(4EJ + k2L)k1 - 8EJk1]L 

The third column of matrix [kes] is created as follows 
Boundary conditions, Fig. le: 

{X} = [X1 X2 X3 X4]T = [O 0 1 O]T 

h = -k1x2; h = -k2x4; xi = 0, X3 = 1. 

To impose the boundary conditions into equations (2.1) that becomes: 

{

4EJ 6EJ 2EJ {(4EJ ) 2EJ -X2 - -X3 + -X4 = -k1X2 - +kl X2 + -X4 
L £2 L L L 

2EL 6EJ 4EJ tj- 2EJ (4EJ ) 
-X2 - -X3 + -X4 = -X4k2 -X2 + - + k2 X4 

L L 2 L L L 

Solving equations (3.4) to find x2; x4: 

6EJ(2EJ + k2L) 
x2 

= (12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2)L' 
6EJ(2EJ + k1L) 

x4 = (12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2)L' 

[k13 k23 k33 k43f = [ke] x [x1 X2 X3 X4f 

36E2J2(2EJ + k2L) + 36E2J2(2EJ + k1L) 12EJ ---
L3(12E2J2 + 4EJk2L + 4Lk1EJ + L 2k1k2) L3 

24E2J 2(2EJ + k2L) + 12EJ2(2EJ + k1L) _ 6EJ 
L2(12E2J2 + 4EJk2L + 4Lk1EJ + L2k1k2) L2 

-36E2J 2(2EJ + k2L) - 36E2J2(2EJ + k1L) + l2EJ 
L 3(12E2J 2 + 4EJk2L + 4Lk1EJ + L2k1k2) L3 

12E2J 2(2EJ + k2L) + 24E2J 2(2EJ + k1L) _ 6EJ 
L2(12E2J 2 + 4EJk2L + 4Lk1EJ + L2k1k2) L2 
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The fourth column of matrix [kes] is created as the follows 
Boundary conditions, Fig. lf: 

{X} = [X1 X2 X3 X4]T = [O 0 0 lf 

h = -k1 x2; f4 = k2 - k2x4 ; X1 = 0, X3 = 0. 

To impose the boundary conditions into equations (2.1) that becomes: 

{ 

4EJ 2EJ { (4EJ ) 2EJ yx2+yx4 =-k1x2 y+k1 x2+yx4 =0 

2EJ 4EJ {:} 2EJ 4EJ 
yx2+yx4 =k2-k2x4 yx2+ (y+k2)x4 =k2 

Solving equations (3.5) to find x 2 , x4 : 

-2EJLk2 x -~~~~~~~~~~~~~~-
2 - (12E2 J2 + 4EJk2L + 4Lk1EJ + L2k1k2 ' 

( 4EJ + k1L )Lk2 x -~~~~--'-~~~---'-~~~~~~ 4 
- (12E2J 2 + 4EJk2L + 4Lk1EJ + L2k1k2) 

[k14 k24 k34 k44]T = [ke] x [x1 X2 X3 X4f 

(3.5) 

3.2. To create the geometric stiffness matrix of beam with semirigid 
connections [kas] 

From equations (2.2) the equilibrium equations for beam with semirigid connec­
tions, are in matrix form, Fig. lb, where: [kas] is the geometric stiffness matrix of 
beam with semirigid connections; 

or {F} = [kas]{X} (3.6) 

The equilibrium equations of nodal point forces: 

{F} = {f} 
{F} = [F1 F2 F3 F4]T; {f} = [!1 f2 f3 f4]T 

The first column of matrix [kas] is created as follows 
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Boundary conditions, Fig. le: 

{X} = [X1 X2 X3 X4f = [1 0 0 Of 

h = -k1x2 ; f4 = -k2x4; Xi = 1, X3 = 0. 

To impose the boundary conditions into equations (2.2) that becomes: 

Solving equations (3.7) to find x2 ; x 4 : 

P(PL + 6k2) 
x 2 = - -P-2 L-2 _+_8_k_2_P_L_+_8_k_1 P_L_+_6_0_k_1-k2 ' 

P(PL + 6k1) 
x--------------

4 - P 2L 2 + 8k2PL + 8k1PL + 60k1k2' 

[ku k21 k31 k41f = [ka] X [x1 X2 X3 X4]T 

6P P2(PL + 6k2) + P2(PL + 6k1) 

5L 10(?2 L2 + 8k2P L + 8k1P L + 60k1k2) 
P 4P2 L(P L + 6k2) - P 2 L(P L + 6k1) 

10 30(P2 £ 2 + 8k2P L + 8k1P L + 60k1k2) 

6P P2(PL + 6k2) + P2(PL + 6k1) 
--+----- ------- -

5L 10(?2 £ 2 + 8k2P L + 8k1P L + 60k1k2) 
P P 2 L(P L + 6k2) - 4P2 L(P L + 6k1) 
-+-------------
10 30(?2 £ 2 + 8k2P L + 8k1P L + 60k1k2) 

The second column of matrix [kas] is created as follows 
Boundary conditions, Fig. ld: 

{X} = [X1 X2 X3 X4f = [O 1 0 Of 

h = k1 - k1x2; f4 = -k2x4; X1 = 0, X3 = 0. 

To impose the boundary conditions into equations (2.2) that becomes: 

=0 
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Solving equations (3.8) to find x 2 , x4 : 

4k1 (2P L + 15k2) x - . 2 
- P 2L2 + 8k2PL + 8k1PL + 60k1k2' 

2PLk1 
x4 = -P-,--2 L_2_+_8_k2_P_L_+_8_k_1 P_L_+_6_0_k_1 k-2 ' 

[k12 k22 k32 k42f = [ka] x [x1 X2 X3 X4]T 

The third column of matrix [kas] is created as follows 
Boundary conditions, Fig. l e: 

{ X} = [X1 X2 X3 X4f = [O 0 1 OJT 

h = -k1x2; f4 = -k2x4; Xi = 0, x3 = 1. 

To impose the boundary conditions into equations (2.2) that becomes 

Solving equations (3.9) to find x 2 , x4 : 

P(PL + 6k2 ) x - . 2 
- P2 L2 + 8k2P L + 8k1P L + 60k1k2 ' 

P(PL + 6k1) 
X4 = p2 £2 + 8k2P L + 8k1P L + 60k1k2 ' 

[k13 k23 k33 k43]T = [ka] x [x1 X2 X3 X4f 

6P P2(PL + 6k2) + P2(PL + 6k1) 
- 5L + 10(P2L2 + 8k2PL + 8k1PL + 60k1k2) 

P 4P2 L(P L + 6k2) - P2 L(P L + 6k1) 
- 10 + 30(P2L2 + 8k2PL + 8k1PL + 60k1k2) 
6P P2(PL + 6k2) + P2(PL + 6k1) 
5L 10(P2L2 + 8k2PL + 8k1PL + 60k1k2) 

P P2 L(P L + 6k2) - 4P2 L(P L + 6k1) 
---

10 30(P2L2 + 8k2PL + 8k1PL + 60k1k2) 
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The fourth column of matrix [kas] is created as follows 
Boundary conditions, Fig. lf: 

{X} = [X1 X2 X3 X4f = [O 0 0 l]r 

/2 = -k1X2j /4 = -k2X4j X1 = 0, X3 = 0. 

To impose the boundary conditions into equations (2.2) that becomes: 

15X2 -
30 

X4 = -k1X2 15 + ki X2 -
30 

X4 = 0 

{ 

2P L PL { ( 2P L ) PL 

PL 2PL {::} PL 2PL 
- 30X2+1:5X4 = k2X4 - k2x4 - 30 X2 + ( 1:5 + k2)x4 = k2 

Solving equations (3.10) to find x2, x4: 

2PLk2 x -~~~~~~~~~~~-
2 - P2L 2 + 8k2PL + 8k1PL + 60k1k2' 

4k2 (2P L + 15k1) x -~~~~-'--~~~--"-~~-
4 - P2L 2 + 8k2PL + 8k1PL + 60k1k2 ' 

[k14 k24 k34 k44]T = [ku] x [x1 X2 X3 X4f 

(3.10) 

4. To create the stiffness matrix and geometric stiffness matrix of 
beam with semirigid connections and rigidzones (or rigid offset) [k;sl; 
[k;sl - Plane frame 

Equilibrium equations for vector of nodal point forces for e1 and e2, Fig. 3b. 
F1 = Ft; F2 = Fi - Ft e1; F3 = Fj; F4 = F4 + Fj e2, are written in matrix 

form 

[~~] = [-~1 ~ ~ ~] [~}] F3 0 0 1 0 x Fj 
~ 0 0 ~ 1 ~ 

or {F} = [E1]{F*}. (4.1) 

Equilibrium equations for vector of nodal point displacements for e1 and e2, Fig. 3b. 
X 1 =Xi+ X:2e1; X2 = X2; X3 = X3-X4e2; X4 = X4, are written in matrix form: 

e1 0 
1 0 
0 1 
0 0 

143 

or {X} = [E2]{X*} (4.2) 



and [E1)-1 = [E2)r. 
Substituted (4.1), (4.2) into equations {F} = [kes]{X} that becomes: 
[E1){F*} = [kes] . [E2) . {X*} {:} {F*} = [E1J-1[kes] . [E2] . {X*} {:} {F*} = 

[E2JT. [kesl. [E2] · {X*}. 
So that [k;sJ = [E2JT[kes] · [E2] and similar [k;sJ = [E2]T[kus] · [E2]. 

5. To create vector of nodal point loads of beam with semirigid con­
nections 

5.1 Vector of nodal point loads for uniform load of beam with semirigid 
connections {qem}, Fig. 2a 

(5.1) 

where 

{ } = [qL qL
2 

qL 
qe 2 12 2 

- qL2]T 
12 . 

To impose the boundary conditions (x1 = 0, x 3 = 0) into equations (5.1) that 
becomes: 

Solving equations (5.2) to find x 2 , x 4 : 

qL3 (6EJ + k2L) 
x -~-------'---------2 - 12(12E2J 2 + 4k2LEJ + 4k1LEJ + k1L2k2) ' 

qL3 (6EJ + k1L) 
x----------------

4 - 12(12E2J2 + 4k2LEJ + 4k1LEJ + k1L2k2) 
{ qem} = {qe} - [ke]{ X} 

qL2 

12 
qL2 

12 
(5.2) 

(5.3) 

5.2 Vector of nodal point loads for concentrated load at middle of beam 
with semirigid connections {Pem}, Fig. 2b 

where 

[
PL 

{Pe}= 2 
PL2 

8 
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To impose the boundary conditions (x1 = 0, x 3 = 0) into equations (5.4) that 
becomes: 

Solving equations (5.5) to find x 2 , x 4 : 

1 PL3(6EJ + k2L) 
x2 . 8 ..,..(1_2_E_2_J2_+_4_k2_L_E_J_+_4_k_1L_E_J_+_k_1_k-2L_2_) 

1 PL3 (6EJ + k1L) 
x4 

= - 8 (12E2J2 + 4k2LEJ + 4k1LEJ + k1k2L2) 

{Pem} ={Pe} - [ke]{x} 

6. Numerical analysis 

PL2 

8 
PL2 

---
8 
(5.5) 

(5.6) 

The structural stiffness equations are formed by superimposing the member stiff­
ness include effects of geometric nonlinearity and connection flexibility. The struc­
ture matrix [Kas] is built by summing overlapping terms of element matrices [kasJ, 
in the same way that the conventional [Kes] is built by summing overlapping terms 
of element matrices [kesl· 

([Kes] + Acr[Kas]ref) { dX} = {O}. (6.1) 

Equation (6.1) defines an eigenvalue problem whose lowest eigenvalue Acr is asso­
ciated with buckling of frames with semirigid connections. The critical of buckling 
load is 

{F}cr = Acr{F}ref· (6.2) 

A column is an integral p11rt of a frame, where end conditions depend on stiffness 
of the beams and girdernJraP:iing into the column, and the rigidity of the beam -

f c ' .f. 

column connections. An effective length factorµ is used to modify the actual length 
of the column for design purposes. The factor µ is defined as: 

7r {JfJ 
µ = Ly P;; · · (.see [4] ) (6.3) 

7. Comprehensive examples 

The develop analysis was numerically implemented through the computer pro­
graJil written by Pascal languge, which was tested for efficiency and reliability. 
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Table 1. µ Factor - Comparison results between program and VSD Fig. 4a,b 

ix p· p· Semrigid Solution Program - Joint Stiffness a = .!; Fixed-Fixed - m- m 
ic ix 

solution solution 
VSD 0.001 0.01 0.1 1 10 100 1000 10E4 VSD 

0 
0.2 35.54 10.717 4.627 3.572 3.436 3.436 3.436 3.42 
0.3 35.54 10.717 4.342 3.154 3.015 3.015 3.015 3.00 
0.5 35.54 10.717 4.051 2.801 2.657 2.642 2.627 2.63 
1.0 35.54 9.858 3.855 2.507 2.349 2.329 2.329 2.33 
2.0 35.54 9.858 3.767 2.359 2.183 2.159 2.159 2.17 
3.0 35.54 9.858 3.726 2.299 2.128 2.105 2.105 2.11 
10 35.54 9.858 3.686 2.226 2.049 2.049 2.029 2.00 

Table 2. µ Factor - Comparison results between program and VSD Fig. 5a,b,c 

ix p· P' k 
- m- m Semrigid Solution Program - Joint Stiffness a= -:---- Fixed-Fixed 
ic ix 

solution solution 
VSD 0.001 0.01 0.1 1 10 100 1000 10E4 VSD 

0 2 2 2 2 2 2 2 2 2 2 
0.2 2 2 1.999 1.924 1.685 1.522 1.495 1.495 1.495 1.50 
0.3 2 2 1.984 1.919 1.648 1.433 1.397 1.393 1.393 1.40 
0.5 2 .. 2 1.984 1.919 1.611 1.331 1.280 1.273 1.273 1.28 
1.0 2 · 2 1.984 1.919 1.579 1.228 1.160 1.152 1.151 1.16 
2.0 2 2 1.984 1.919 1.560 1.165 1.086 1.078 1.077 1.08 
3.0 2 2 1.984 1.919 1.554 1.142 1.060 1.050 1.050 1.06 
10 2 2 1.984 1.919 1.545 1.108 1.020 1.011 1.010 1.00 

EJx k1 EJx ki Elx 
ix=-

L 

H EJc H EJc EJc 
ic=H 

Fixed-Fixed Semirigid Solution k LK 
Solution a=-=-

ix EJx 

(4.a) (4.b) L 

.Fig. 4 

146 
!• 



EJx k, EJx EJx 

H EJc H EJc H EJc 
Fixed-Fixed Semirigid Solution Pin-Pin Solution 

Solution 

x 

(5.a) L 
(5.b) L L (5.c) 

Fig. 5 

The input is methodically and economically grouped into data files with very 
little time and effort required for their preparation. Most features broadening the 
scope of the analysis have been transferred to the computer code. Several plane 
frames are investigated using the program to demonstrate the validity and effective­
ness of the stability analysis for semirigid frames. The table 1 and table 2 illustrated 
for ix/ic = 0 to 10 and a= 0.001 to a= lOE4 respectively with simple connections 
and rigid connections, for semirigid connections k1 = k2 = k. 

8. Conclusions 

The first-and second-order stiffness matrices of beam-column of double sym­
metrical cross section with semirigid connections and semirigid connections with 
rigidzones including the effects of end axial loads are derived in a classical manner. 
The derived matrices can be used in the stability, first- and second-order elastic 
analyses of framed structures with rigid, semirigid, and simple connections with or 
without rigidzones. The proposed method uses the axial loads in columns obtained 
from a first-order linear analysis to determine the critical axial load, effective length 
µfactor of each column of framed structure in any type of construction. 

The advantages of the proposed method are: (1) the effects of semirigid con­
nections are condensed into the stiffness and geometric stiffness matrix coefficients 
without introducing additional degrees of freedom; and (2) both matrices can be 
incorporated into computer programs without major difficulties. 

. In current engineering practice, the determination of the µ factor of columns 
must be made in order to design frames based on VSD, [2]. In the present paper, 
the governing equations for determining the column µ factor for frames with rigid, 
semirigid, and simple connections and rigidzones under various boundary conditions 
are derived based on the stability of semirigid frames. The validity of both matrices 
is verified against available solutions of stability analysis, table 1, 2 and VSD [2]. 
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A. , ,., , , ,.. ~ "" ' 

PHAN TICH ON DINH KHUNG THEP CO LIEN KET MEM VA 
, · ,,, ' ... ~"" 

KHUNG THEP CO NUT CUNG CUNG LIEN KET MEM 

Bai bao nay trlnh bay each thiet l~p ma tr~n de) cling, ma tr~n de) cung hinh 
h<;>c cho phan ttr dam lien ket dan hoi t~i hai d8.u va phan ttr dam c6 nut cung cimg 
lien ket dan hoi t~i hai dau. v ai hai ma tr~n dugc thiet l~p c6 th~ ung d\lllg d~ 
phan tich on d!nh cl'ia khung thep c6 lien ket cung, lien ket mem, va lien ket khap 
c6 nut cung ho~c khong c6 nut cung. 
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