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ABSTRACT. Using the definit~on for the partial derivative of a scalar in respect to the 
vector, this paper presents the relations between 'kinetic energy and linear momentum, an­
gular momentum of the particle and of the rigid body. The obtained results are useful for 
the investigation of the dynamics of multibody systems. 

1. Introduction 

The linear and angular momentum of the particle are the basic dynamic quanti­
ties of Newton's mechanics. The kinetic energy of the particle is the basic dynamic 
quantity of Lagrange's mechanics [1 , 2]. In the present paper we use the definition 
for the partial derivative of a scalar a in respect to the vector x [4, 5] 
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in order to study the relation between the kinetic energy of the particle and the 
rigid body and their linear and angular momentum. 

2. Relation between kinetic energy and linear momentum of the par­
ticle 

The expression for the linear momentum and the kinetic energy of the particle 
has the following form [1, 2] 

P=mv, 
1 

T = - mv2 

2 ' 

where mis the mass and vis the velocity vector of the particle. 

(2.1) 

In the reference system Oxyz (Fig. 1), the linear momentum and kinetic energy 
of the particle can be written as 
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P [ . . ']T = mx,my,mz , (2.2) 

(2.3) 

Theorem 1. Partial derivative of kinetic 
energy of the particle in respect to its ve­
locity vector is equal to the transposed vec­
tor of the linear momentum of the particle 

aT =PT 
av . (2.4) 

Proof. According to definition (1.1) we 
find 

~: = ar · a~T = [~~, ~: ' ~:J · 
From the expression for the kinetic energy of the particle (2.3) it follows that 

With it we have 

8T . 8T . 8T . 
ax = m x, ay =my, oi = mz, 

fJT . . . T 
av= [mx ,my,mz] = p . 

Theorem 2. Partial derivative of kinetic energy of the particle in respect to its 
linear momentum vector is equal to the transposed vector of the velocity vector . of 
the particle 

fJT T -=v fJP . (2.5) 

Proof. According to the definition (1.1) and the expression (2.2) we have 

~~ = fJT. f]~T = [~~±' ~~y ' ~~i]. 
From the expression for the kinetic energy of the particle (2.3) we can calculate 

fJT . fJT . fJT . 
mox = x, moy = y , moi = z. 

Substituting this result into the above equation we obtain 

aT . ap = [x , y, i] =VT . 
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3. Relation between kinetic energy of the rigid body and its linear 
and angular momentum 

z 

2 

y 

x Fig. 2 

The configuration of a rigid body in 
space can be identified by using six coor­
dinates. Three coordinates describe the 
body translation, and three coordinates 
define the orientation of the body (Fig. 2). 

The expressions of the linear momentum, 
the angular momentum and the kinetic 
energy of the rigid body have the form [1 , 
3, 4, 5, 6] 

P =mvc, (3.1) 

Le = Jew, (3.2) 

T = ~mv~ + ~w ·Jc ·W, (3.3) 

where mis the mass of the body, vc is the velocity vector of mass center, w is the 
angular velocity of the rigid body and Jc is the inertia tensor of the rigid body 
relative to its mass center. 

The expressions (3.1) , (3.2) and (3 .3) can be written in a matrix form as [1 , 3, 
4, 5] 

P = m v c, Le = Jc · w, 

1 T 1 T 
T = 2mv0 vc + 2w Jew, 

where Jc is the matrix of the inertia tensor Jc. 

In the reference system Oxyz (Fig. 2), the vectors P and vc therefore have the 
form 

P [ . . .]T 
= mx, my, mz , 

[ . . . ]T 
vc = xc, Ye, zc . ·· 

. (3.4) 

(3.5) 

It is known that if the origin of the body reference is attached to the ~ass center 
of the rigid body and the body reference C123 is the principal inertial axes system, 
the inertia matrix Jc and angular velocity w of the rigid body can be written as [1] 
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Jc= ~ 0] 0 l 

]33 

(3.6.) 

{3.7) 

in which the .moments of inertia 111 , h2, ]33 are constant. 

Using the expressions (3.6), (3.7) the angular momentum Le and the kinetic 
energy T of the rigid body can be written as 

Le= [Jnwi, l22W2 , ]33w3]T, 

T 1 I ( . 2 . 2 . 2 .) 1 ( 2 2 2) 
= 2m Xe+ Ye + ze + 2 l11w1 + J22W2 + ]33w3 . 

(3.8) 

(3.9) 

Now we shall prove the theorems of the relations between the kinetic energy and 
-the linear and angular momentum of the rigid body. 

Theorem 3. Partial derivative of the kinetic energy of the rigid body in respect 
to its velocity vector of mass center is equal to the transposed vector of the linear 
momentum of the rigid body 

Proof. According to the definition (1.1) we have 

aT -aT 1 - [OT 8T 8T] 
ave - . . av~ -- axe' 8iJe' 8ie 

From the expression for the kinetic energy of the rigid body (3.9) gets 

Therefore it is 

8T . 8T . 
8xe = mxe, Bile = myc , 

8T . 
-=mzc. 
8zc 

oT ( . . . . ) pT -
0 

= mxc, myc, mze = . 
Ve 

(3.10) 

Theorem 4. Partial derivative of the kinetic energy of the rigid body in respect to 
its linear momentum vector is equal to the transposed vector of the velocity vec_tor of 
the mass center of the rigid body 

8T T 
8P = Vp· 
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Proof. According to the definition (1.1) we have 

~~ = oT · a~r = [m~~c, m~c ' m°:Z0 J · 

From the expression for the kinetic energy of the rigid body (3.9) we obtain 

Thus, we have 

fJT . 
a, _:.Xe, 

m xe 
fJT . 

m8i;e =Ye , 
8T . 

m8ie = zc. 

{}T " . J T 
[JP = l±c, 'fJc, ze = vc . 

Theorem 5. Partial derivative of the kinetic energy of the rigid body in respect to 
its angular vector is equal to the transposed vector of the angular momentum vector 
relative to its mass center 

(3.12) 

Proof. According to the definition (1.1) we have 

?_!_=oT · -1-= roT, 8T' 8T]. aw OWT L8U..11 8w2 8W3 

From the expression for the kinetic energy of the rigid body (3.9) yields 

Therefore it is 
fJT r ] T aw = ll11w1, l 22W2 , ]33W3 =Le. 

Theorem 6. Partial derivative of the kinetic energy of the rigid body in respect to 
its angular momentum vector relative to the mass center of rigid body is equal to the 
transposed vector of the angular vector of the rigid body 

aT T ( ) fJL = w . 3.13, 
. c 

Proof. According to the definition (1.1) and correcting the expression (3.8) we have 

8T _BT 1 _ [ 1 8T 1 8T 1 8T] 
fJLc - . BL~ - Jn 8w1 ' 122 fJw2 ' ]33 8w2 · 

The expression for the kinetic energy of the rigid body yields 

1 fJT 
--=w, 
Jn 8w1 ·' 

1 aT 
--=W2 
122 fJw2 ' 
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With them we have 

4'. Conclusions 

The paper presents two theorems of the relation between kinetic energy and linear 
momentum of the particle, two theorems of the relation between kinetic energy of the 
rigid body and its linear momentum, two theorems of the relation between kinetic 
energy and angular momentum of the rigid body relative to its mass center. These 
theorems are simple and useful. 

This publication is completed with the financial support of the Council for Nat­
ural Sciences of Vietnam. 
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VE QUAN Ht GIU A DQNG NANG v6r DQNG LUQNG, 
A A ' ,,./ ,J ... ... 6 

MOMEN DQNG LU(JNG CUA CHAT DIEM VA V~T RAN 

'Tuong bru bao nay Slr d\mg c:4nh nghia ve ~o ham clia ham VO hu6ng theo bien 
vecta, tac giA da thiet l~p m9t so h~ thuc quan h~ gifra d(mg nang v6i d(mg luqng, 
momen d<~mg lm;rng cua chat di~m va v~t ran. Cac ket qui thu dugc c6 the Slr d\mg 
trong nghien c{ru d9ng l\rc h9c h~ nhieu v~t. · 
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