A NOTE ON THE METHOD OF HARMONIC BALANCE

Nguyen Van Dinh
Institute of Mechanics, NCST of Vietnam

Abstract

Free oscillation period of the Duffing oscillator with cubic non-linearity was examined. A comparison between the exact period and those obtained by the asymptotic and the harmonic balance methods was done. It was shown that the results given by the harmonic balance are acceptable even for large oscillations whereas the asymptotic method can only be applied for small oscillations.

Introduction

The perturbation methods (the Poincaré, the asymptotic and the multiple scale methods) can only be applied to weakly non-linear systems. This well-known remark has been verified in [1] through a comparison between the exact free oscillation period of the Duffing oscillator (1.1) and that given by the Poincaré method.

The present article deals with the same question but for the asymptotic and the harmonic balance methods; the latter is often used for studying strong non-linear systems although its accuracy needs to be carefully examined. It will be shown that, for large oscillations, the results obtained from the asymptotic method are to be rejected whereas those of the harmonic balance method are acceptable.
§1. The system under consideration and the exact period
Consider the Duffing oscillator described by the differential equation:

$$
\begin{equation*}
\dot{\Delta}+x+\varepsilon x^{3}=0 \tag{1.1}
\end{equation*}
$$

where x is an oscillatory variable, overdots denote the derivatives with respect to time $t ; 1$ is the linear frequency; ε is a positive parameter.

The free oscillation with the initial conditions

$$
\begin{equation*}
\left.x(t)\right|_{t=0}=x_{0},\left.\quad \dot{x}(t)\right|_{t=0}=0 \tag{1.2}
\end{equation*}
$$

has the period [2]:

$$
\begin{equation*}
T=\frac{4}{\sqrt{1+A_{0}}} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}} \tag{1.3}
\end{equation*}
$$

where $A=\varepsilon x_{0}^{2}, \quad m=\frac{A_{0}}{2\left(1+A_{0}\right)}$.
§2. Free oscillation period from the asymptotic solution
As well-known, the asymptotic method [3] can only be applied if ε is small enough. Here, to make necessary comparison, the asymtotic period is given for arbitrary ε.

The expansion of the asymptotic solution is of the form:

$$
\begin{align*}
& x=a \cos \psi+\varepsilon u_{1}(a, \psi)+\varepsilon^{2} u_{2}(a, \psi)+\ldots \tag{2.1}\\
& \left\{\begin{array}{l}
\dot{a}=\varepsilon A_{1}(a)+\varepsilon^{2} A_{2}(a)+\ldots \\
\omega=\dot{\psi}=1+\varepsilon B_{1}(a)+\varepsilon^{2} B_{2}(a)+\ldots
\end{array}\right. \tag{2.2}
\end{align*}
$$

where: a is the amplitude of the first harmonic; ψ is the phase angle; ω is the frequency to be calculated; $u_{i}(a, \psi)(i=1,2, \ldots)$ are functions of $(a, \psi), 2 \pi$-periodic in ψ but do not contain the first harmonics; $A_{(}(a)$ and $B_{i}(a)(i=1,2, \ldots)$ are functions of a.

Substituting (2.1), (2.2) into (1.1) and vanishing the terms of like powers of ε, then those of like harmonics yield:

$$
\begin{array}{ll}
A_{1}=0, & B_{1}=\frac{3}{8} a^{2}, \quad u_{1}=\frac{a^{3}}{32} \cos 3 \psi \\
A_{2}=0, & B_{2}=-\frac{15 a^{4}}{256} \tag{2.4}
\end{array}
$$

Thus

- To the first approximation:

$$
\begin{aligned}
& \dot{a}=0 \quad \text { i.e. } \quad a=\text { const, } \\
& \omega=\dot{\psi}=1+\frac{3}{8} \varepsilon a^{2} \quad \text { i.e. } \psi=\left(1+\frac{3}{8} \varepsilon a^{2}\right) t \\
& x_{1}=a \cos \psi \quad \text { is the first approximation solution, } \\
& x_{1 *}=a \cos \psi+\frac{\varepsilon a^{3}}{32} \cos 3 \psi \text { is the refinement of the } \\
& \quad \text { first approximation solution. }
\end{aligned}
$$

- To the second approximation

$$
\begin{align*}
& \dot{a}=0 \quad \text { i.e. } \quad a=\text { const, } \\
& \omega=\dot{\psi}=1+\frac{3}{8} \varepsilon a^{2}-\frac{15}{256} \varepsilon^{2} a^{4} \quad \text { i.e. } \quad \psi=\left(1+\frac{3}{8} \varepsilon a^{2}-\frac{15}{256} \varepsilon^{2} a^{4}\right) t \tag{2.6}\\
& x_{2}=a \cos \psi+\frac{\varepsilon a^{3}}{32} \cos 3 \psi \text { is the second approximation solution. }
\end{align*}
$$

Note that, corresponding to the solutions $x_{1}, x_{1 *}, x_{2}$, the initial abscissa, x_{0} can be expressed as:

$$
\begin{equation*}
x_{0}=x_{1}(0)=a, \quad x_{0}=x_{1 *}(0)=a+\frac{\varepsilon a^{3}}{32}, \quad x_{0}=x_{2}(0)=a+\frac{\varepsilon a^{3}}{32} \tag{2.7}
\end{equation*}
$$

Hence, the formulas of the periods are:

- for the first approximation solution:

$$
\begin{equation*}
T_{1}=\frac{2 \pi}{\omega}=\frac{2 \pi}{1+\frac{3}{8} A} \quad \text { with } \quad A=\varepsilon a^{2}=\varepsilon x_{0}^{2}=A_{0} \tag{2.8}
\end{equation*}
$$

- for the refinement of the first approximation solution

$$
\begin{equation*}
T_{1 *}=\frac{2 \pi}{1+\frac{3}{8} A} \quad \text { with } A \text { satisfying } \quad A_{0}=A\left(1+\frac{A}{32}\right)^{2} \tag{2.9}
\end{equation*}
$$

- for the second approximation solution:

$$
\begin{equation*}
T_{2}=\frac{2 \pi}{1+\frac{3}{8} A-\frac{15}{256} A^{2}} \text { with } A \text { satisfying } A_{0}=A\left(1+\frac{A}{32}\right)^{2} \tag{2.10}
\end{equation*}
$$

§3. Free oscillation period from the harmonic balance solution
We apply now the harmonic balance method to solve the question stated. The one-component solution takes the form:

$$
\begin{equation*}
x=a \cos \omega t, \quad a=\text { const }, \quad \omega=\text { const to be calculated } . \tag{3.1}
\end{equation*}
$$

Substituting (3.1) into (1.1) and vanishing the harmonic coswt we obtain:

$$
\begin{equation*}
\omega^{2}=1+\frac{3}{4} \varepsilon a^{2} \tag{3.2}
\end{equation*}
$$

Since $x_{0}=a$, the period of the one-component solution is given by:

$$
\begin{equation*}
\widetilde{T}_{1}=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{1+\frac{3}{4} A}} \tag{3.3}
\end{equation*}
$$

where $A=\varepsilon a^{2}=\varepsilon x_{0}^{2}=A_{0}$.
The two-component solution is:

$$
\begin{equation*}
x=a \cos \omega t+b \cos 3 \omega t \tag{3.4}
\end{equation*}
$$

where: $a=$ const, $b=$ const, $\omega=$ const ta be calculated.
Again, substituting (3.4) into (1.1) and vanishing the terms $\cos \omega t, \cos 3 \omega t$, we obtain respectively

$$
\left\{\begin{array}{l}
\left(1-\omega^{2}\right) a+\frac{3 \varepsilon}{4}\left(a^{3}+a^{2} b+2 a b^{2}\right)=0 \tag{3.5}\\
\left(1-9 \omega^{2}\right) b+\frac{\varepsilon}{4}\left(a^{3}+6 a^{2} b+3 b^{3}\right)=0
\end{array}\right.
$$

Letting $b=\beta a$, we rewrite (3.5) as:

$$
\begin{align*}
& \omega=\sqrt{1+\frac{3}{4} A\left(1+\beta+2 \beta^{2}\right)} \tag{3.6}\\
& 51 A \beta^{3}+27 A \beta^{2}+(21 A+32) \beta-A=0 \tag{3.7}
\end{align*}
$$

Since $x_{0}=a+b=a(1+\beta)$, the relation between $A=\varepsilon a^{2}$ and $A_{0}=\varepsilon x_{0}^{2}$ is:

$$
\begin{equation*}
A_{0}=\varepsilon x_{0}^{2}=\varepsilon a^{2}(1+\beta)^{2}=A(1+\beta)^{2} \tag{3.8}
\end{equation*}
$$

Hence, the equation (3.7) can be rewritten as:

$$
\begin{equation*}
\left(51 A_{0}+32\right) \beta^{3}+\left(27 A_{0}+64\right) \beta^{2}+\left(21 A_{0}+32\right) \beta-A_{0}=0 \tag{3.9}
\end{equation*}
$$

Finally, the period of the two-component solution can be expressed as:

$$
\begin{equation*}
\widetilde{T}_{2}=\frac{2 \pi}{\sqrt{1+\frac{3}{4} A\left(1+\beta+2 \beta^{2}\right)}} \tag{3.10}
\end{equation*}
$$

where β, A - as functions of A_{0} - must be determined from (3.8), (3.9).

§4. Concluding remarks

The periods obtained from the presented methods are given below in the following table

$\frac{A_{0}}{0}$	$\frac{T}{1}$	$\frac{T_{1}}{}$	$\frac{T_{1 *}}{}$	$\frac{T_{2}}{}$	$\frac{\widetilde{T}_{1}}{}$	$\frac{\widetilde{T}_{2}}{1.28319}$
6.28319	6.28319		6.28319	6.28319	6.28319	
0.01	6.25796	6.25971	6.25973	6.25976	6.25976	6.25976
0.1	6.06066	6.05608	6.05744	6.06082	6.06004	6.06065
1.0	4.76802	4.56959	4.64106	4.82704	4.74964	4.76736
4	3.17971	2.51327	2.81326	3.92813	3.14159	3.17724
10	2.19179	1.32278	1.76963	7.47998	2.15511	2.18897
40	1.15182	0.39270	0.85044	-0.65345	1.12849	1.14986
100	0.73626	0.16320	0.54232	-0.17898	0.72073	0.73491
1000	0.23434	0.01671	0.20106	-0.01795	0.22928	0,23390

It can be seen that even for large oscillations, the harmonic balance solution is acceptable: for $A_{0}=1000$, the relative error of \widetilde{T}_{1} is of order 2% and that of \widetilde{T}_{2} is smaller than 2%.

Another remark: for small oscillations, the asymptotic solution is acceptable and the second approximation T_{2} is more accurate than the first ones (T_{1} and $T_{1 *}$); for large oscillations, as well-known the conclusion is the reverse and the second approximation becomes irrational ($T_{2} \rightarrow \infty$ as $A_{0} \rightarrow A_{0 *} \approx 13.44659$ and $T_{2}<0$ as $A_{0}>A_{0 *}$).

This work was supported by the Council for Natural Science of Vietnam.

REFERENCES

1. Cheung Y. K., Chen S. H. and Lau S. L. A modified Lindstedt-Poincaré method for certain]strongly non-linear oscillators, Int. J. Non-Linear Mechanics, Vol. 26, No3/4, 1991, pp.367-378.
2. Nayfeh A. H. Introduction to perturbation techniques, Wiley, New York, 1981.
3. Mitropolski Yu. A., Nguyen Van Dao. Applied Asymptotic Methods in Nonlinear Oscillations. Kluwer Academic Publishers, Dordrecht, Netherlands, 1997.

Received November 29, 2000

GHI CHỨ VỀ PHƯONG PHÁP CÂN BÅ̀NG ĐIÊU HÒA

Xét chu kỳ dao động tự do của chấn tử Duffing với yếu tố phi tuyến bậc ba. Chu kỳ tính theo phương pháp tiệm cận và phương pháp cẩn bằng diều hòa được so sánh với chu kỳ chính xác. Nhận thấy kết quả thu dược từ phương pháp cân bằng diều hòa được chấp nhận trong khi phương pháp tiệm cận - như đã biết - chỉ có thể áp dụng cho các dao dộng nhơ.

