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Abstract. The paper studies nonlinear dynamic response of an eccentrically stiffened FGM
(ES-FGM) plates resting on the elastic foundations subjected to blast and thermal loads
with temperature dependent material properties using the Reddy’s higher order shear de-
formation plate theory, stress function, the Galerkin and the fourth order Runge–Kutta
methods. The plates are reinforced by outside stiffeners and both stiffeners and plate
are deformed under temperature. The effects of material and geometrical properties,
temperature-dependent material properties, elastic foundations and stiffeners on the non-
linear dynamic response of the ES FGM plate under blast and thermal loads in thermal
environments are studied and discussed.

Keywords: Functionally graded materials, nonlinear dynamic response, Reddy’s third or-
der shear deformation plate theory (TSDT), blast load.

1. INTRODUCTION

In the mid-1980s, functionally graded material (FGM) was introduced for the first
time. FGM is characterized by spatial variation in material properties as it is composed
of at least two different components with a gradual changing of volume fraction along at
least one direction. The purpose of this concept is to combine the best properties of two or
more constituents. Additionally, it helps to eliminate the interface problems commonly
found in composite materials in order to achieve a smoother stress distribution.

In recent years, many important studies have been researched about vibration and
nonlinear dynamic response of an FGM plate and shell. In the vibration and nonlinear
dynamic response of FGM research field, Duc et al. [1]; Dung and Nga [2] using the FSDT
presented the nonlinear analysis of stability for ES-FGM plate under mechanical and ther-
mal loads; Duc [3] studied the nonlinear dynamic response of FGM plate and shell; Duc
et al. [4, 5] investigated the nonlinear vibration and dynamic response of ES-FGM plate
using FSDT [4], TSDT [5]; Alijani and Amabili [6]; Ready and Chin [7]; Ungbhakorn and
Wattanasakulpong [8] considered the FGM plate without stiffeners.
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Vibration of cylindrical shell has been mentioned in some studies. Thang et al. [9]
investigated the thermo mechanical buckling and post-buckling of cylindrical shell with
functionally graded coatings and reinforced by stringers; Dung and Nam [10] did re-
search on circular cylindrical. Duc et al. [11] studied the nonlinear dynamic and vibration
of the S-FGM shallow spherical shells resting on elastic foundations including tempera-
ture effects.

The study about double curved shallow shell has been found in the works of Bich et
al. [12]; Duc [13]; Bich et al. [14].

In the vibration of plate and shell subjected to blast load research field, Hau et al. [15],
studied the dynamic response of laminated composite plate subjected to blast loading us-
ing CS-FEM-DSG3; Duc and Cong [16] investigated the nonlinear dynamic response and
vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honey-
combs; Nelson Lam et al. [17]; Duc et al. [18] presented the nonlinear dynamic response
of FGM plate using TSDT (without stiffeners). Duong and Duc [19] considered the evalu-
ation of elastic properties and thermal expansion coefficient of composites reinforced by
randomly distributed spherical particles with negative Poisson’s ratios.

This paper presents analytical solutions for the nonlinear dynamic response of the
shear deformable ES-FGM plates on elastic foundations using both of the Reddy’s third
order shear deformation plate theory (TSDT), stress function, the Galerkin method and
the fourth order Runge–Kutta method. The work also shows the influences of geometri-
cal parameters, the material properties, the elastic foundations, eccentric stiffeners, tem-
perature on the nonlinear dynamic response of the ES-FGM plates under blast and ther-
mal loads.

2. PROBLEM FORMULATION

2.1. Model of an eccentrically stiffened FGM (ES-FGM) plate
An eccentrically stiffened functionally graded material (ES-FGM) plate in which

FGM consists of two components (ceramic and metal), with in-plane dimensions a and b
and thickness h is considered in an orthogonal coordinate system (O; x, y, z), as shown in
Fig. 1. Stiffeners’ size s1, s2 are the spacing of the longitudinal and transversal stiffeners,
respectively; z1, z2 are the eccentricities of stiffeners with respect to the middle surface
of plate, respectively; d1, h1 and d2, h2 are the width and thickness of longitudinal and
transversal stiffeners, respectively.

2.2. Material properties of the ES-FGM plates
The plate is assumed to be made from a mixture of ceramic and metal with the

volume-fractions given by a power-law distribution as

Vm + Vc = 1, Vc =

(
2z + h

2h

)N

, (1)

whilst N is the volume fraction exponent and takes only non-negative values, and the
subscripts m and c refer to the metal and ceramic constituents, respectively. According to
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Due to extensive application of the FGM structures in high temperature environments, the 

material properties of FGM constituents should be considered as a function of temperature. The 

temperature-dependent typical material property ‘P’ of FGM constituents can be expressed as [7] 

   1 2 3

0 1 1 2 31

    P T P P T P T P T P T  (3) 

whilst 0 T T T and 300T K (room temperature); 0 1 1 2, , ,P P P P  and 3P are temperature-dependent 

coefficients characterizing the constituent materials. 

3. GOVERNING EQUATIONS FOR THE REDDY’S TSDT MODEL 

3.1. Displacement field  

Based on Reddy’s TSDT [20], the displacement field can be expressed as 
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Fig. 1. (a) Geometry of the ES-FGM plate on elastic foundations;
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the mixture rule, the effective properties of the FGM plate can be written as follows

E (z) = Em + (Ec − Em)

(
2z + h

2h

)N

, α (z) = αm + (αc − αm)

(
2z + h

2h

)N

,

ρ (z) = ρm + (ρc − ρm)

(
2z + h

2h

)N

, v = const.
(2)

Due to extensive application of the FGM structures in high temperature environ-
ments, the material properties of FGM constituents should be considered as a function
of temperature. The temperature-dependent typical material property ‘P’ of FGM con-
stituents can be expressed as [7]

P (T) = P0

(
P−1T−1 + 1 + PT

1 + P2T2 + P3T3
)

(3)

whilst T = T0 + ∆T and T = 300K (room temperature); P0, P−1P1, P2 and P3 are
temperature-dependent coefficients characterizing the constituent materials.

3. GOVERNING EQUATIONS FOR THE REDDY’S TSDT MODEL

3.1. Displacement field
Based on Reddy’s TSDT [20], the displacement field can be expressed as

u = u0 + zϕx + z3 4
3h2

[
−ϕx −

∂w0

∂x

]
, v = v0 + zϕy + z3 4

3h2

[
−ϕy −

∂w0

∂y

]
, w = w0. (4)
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The above displacement fields can be rearranged as proposed by [20]

u = u0 − z
∂w0

∂x
+ f (z) φ0

1, v = v0 − z
∂w0

∂y
+ f (z) φ0

2, w = w0, (5)

φ0
1 = ϕx +

∂w0

∂x
, φ0

2 = ϕy +
∂w0

∂y
and f (z) = z

[
1− (4/3) (z/h)2

]
, (6)

here (u, v, w) are displacement components along the (x, y, z) directions, respectively at
a distance z away from reference plane and

(
u0, v0, w0) are displacement component of a

genetic point on the reference surface, ϕx and ϕy rotate around the y and x axes, respec-
tively, and the constant c1 = −4/3h2 in which h is the total thickness of the plate.

3.2. Strain-displacement relations
The non-linear strain-displacement relations at a distance ‘z’ away from the reference

plane of a plate including von Kármán type of nonlinearities are,

εx = ε0
x − z

∂2w0

∂x2 + f (z)
∂φ0

1
∂x

, εy = ε0
y − z

∂2w0

∂y2 + f (z)
∂φ0

2
∂y

,

γxy = γ0
xx − 2z

∂2w0

∂x∂y
+ f (z)

∂φ0
1

∂y
+ f (z)

∂φ0
2

∂x
,

γxz =
∂u0

∂z
+

∂w0

∂x
= f ′ (z) φ0

1, γyz =
∂v0

∂z
+

∂w0

∂y
= f ′ (z) φ0

2 ,

(7)

in which, ε0
x, ε0

y and γ0
xy are reference surface strains and are defined as

ε0
x =

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

, ε0
y =

∂v0

∂y
+

1
2

(
∂w0

∂y

)2

] ,

γ0
xy =

∂u0

∂y
+

∂v0

∂x
+

∂w0

∂x
∂w0

∂y
,

(8)

f ′ (z) =
d
dz

f (z) .

Hooke law for an ES-FGM plate under temperature is defined as(
σx, σy

)
=

E
1− ν2 [(εx, εy) + ν

(
εy, εx

)
− (1 + ν)α∆T(1, 1)],(

σxy, σxz, σyz
)
=

E
2(1 + ν)

(
γxy, γxz, γyz

)
,

(9)

and for stiffeners [5]

σs
x = E0εx − E0α0∆T/ (1− 2v0) , σs

y = E0εy − E0α0∆T/ (1− 2v0) , (10)

E0, v0, α0 are Young’s modulus, Poisson ratio and thermal expansion coefficient of the
stiffeners, respectively. In order to provide continuity between the plate and the stiff-
eners, we assume that the stiffeners are made of full metal (E0 = Em, α0 = αm) when
putting them on the metal-rich side of the plate; and conversely, we assume full ceramic
stiffeners (E0 = Ec, α0 = αc)on the ceramic-rich side of the plate.
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The force and moment resultants of the ES-FGM plate are given in [5]



Nx
Ny
Nxy
Mx
My
Mxy
Px
Py
Pxy


=



B11 B12 0 B13 B14 0 B15 B16 0
B12 B22 0 B24 B14 0 B16 B26 0
0 0 B31 0 0 B32 0 0 B33

B13 B14 0 B43 B44 0 B45 B46 0
B14 B24 0 B44 B54 0 B46 B56 0
0 0 B32 0 0 B62 0 0 B63

B71 B16 0 B73 B46 0 B75 B76 0
B16 B82 0 B46 B84 0 B76 B86 0
0 0 B33 0 0 B63 0 0 B93





ε0
x

ε0
y

γ0
xy

k1
x

k1
y

k1
xy

k3
x

k3
y

k3
xy



−



−B17ϕ1 − B18ϕs
1x

−B17ϕ1 − B28ϕs
1y

0
−B17ϕ2 − B18ϕs

2x
−B17ϕ2 − B28ϕs

2y
0

−B17ϕ4 − B18ϕs
4x

−B17ϕ4 − B28ϕs
4y

0


(11)

Qx
Qy
Rx
Ry

 =


B31 0 B62 0
0 B31 0 B62

B62 0 B63 0
0 B62 0 B63




γ0
xz

γ0
yz

k2
xz

k2
yz


(ϕ1, ϕ2, ϕ4) =

1
1− v

h/2∫
−h/2

(1, z, z3)E(z)α(z)∆T(z)dz,

(ϕs
1i, ϕs

2i, ϕs
4i) =

1
1− 2ν0

−h/2∫
−h/2−h1

(1, z, z3)E0α0∆T
dT

i

sT
i

dz, i = x, y

(12)

in which, the coefficients are found in the Ref. [5].
After the thermal deformation process, the geometric shapes of stiffeners can be de-

termined as follows [5]

dT
1 = d1 (1 + α0∆T) , dT

2 = d2 (1 + α0∆T) , hT
1 = h1 (1 + α0∆T) , hT

2 = h2 (1 + α0∆T) ,
sT

1 = s1 (1 + α0∆T) , sT
2 = s2 (1 + α0∆T) , zT

1 = z1 (1 + α0∆T) , zT
2 = z2 (1 + α0∆T) .

(13)
The nonlinear motion equations of an ES-FGM plate on elastic foundations [20]

Nx,x + Nxy,y = I0u0
,tt + J1ϕ1,tt − c1 I3w0

,xtt ,
Nxy,x + Ny,y = I0v0

,tt + J1ϕ2,tt − c1 I3w0
,ytt ,

Qx,x + Qy,y − c2
(

Rx,x + Ry,y
)
+ Nxw0

,xx + 2Nxyw0
,xy + Nyw0

,yy + c1
(

Px,xx + 2Pxy,xy + Py,yy
)

−K1w0 + K2

(
w0

,xx + w0
,yy

)
+ q (t) = I0w0

,tt + 2εI0w0
,t − c2

1 I6

(
w0

,xxtt + w0
,yytt

)
+c1

[
I3

(
u0

,xtt + v0
,ytt

)
+ J4

(
ϕx,xtt + ϕy,ytt

)]
,

Mx,x + Mxy,y − c1
(

Px,x + Pxy,y
)
−Qx + c2Rx = J1u0

,tt + K2ϕx,tt − c1 J4w0
,xtt ,

Mxy,x + My,y − c1
(

Pxy,x + Py,y
)
−Qy + c2Ry = J1v0

,tt + K2ϕy,tt − c1 J4w0
,ytt ,

(14)
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where

(I1, I2, I3, I4, I5, I7) =

h/2∫
−h/2

ρ(z)
(

1, z, z2, z3, z4, z6
)

dz,

Ji = Ii − c1 Ii+2, K2 = I2 − 2c1 I4 + c2
1 I6, c2 = 3c1 ,

q (t) is blast pressure function, ε is damping coefficient, K1 is Winkler foundation modu-
lus and K2 is the shear layer foundation stiffness of Pasternak model.

The well-known Friedlander wave Eq. (15) defines the rise and fall of the static over
pressure Ps with time as shown by [17]

q (t) = Ps(t) = 1.8Psmax

(
1− t

Ts

)
exp−

kt
Ts , (15)

where the “1.8” factor accounts for the effects of a hemispherical blast, is the maximum
(or peak) static over-pressure, is the parameter controlling the rate of wave amplitude
decay and is the parameter characterizing the duration of the blast pulse.

The stress function ψ (x, y, t) is introduced as

Nx = ψ,yy , Ny = ψ,xx , Nxy = −ψ,xy . (16)

Replacing Eq. (16) into the two first Eqs. (14) yields

u0
,tt = −J1/I0ϕx,tt + c1 I3/I0w0

,xtt (17a)

v0
,tt = −J1/I0ϕy,tt + c1 I3/I0w0

,ytt (17b)

Substituting Eqs. (8) into Eqs. (11), after substituting expressions of Mx, My, Mxy,
Qx, Qy into Eqs. (14) with the aid of Eqs. (14), we obtain

L11
(
w0)+ L12 (ϕx) + L13

(
ϕy
)
+ L14 (ψ) + P

(
w0, ψ

)
= I0w0

,tt + 2εI0w0
,t

+
(
c2

1 I2
3 /I0 − c2

1 I6
) (

w0
,xxtt + w0

,yytt

)
+ (J4c1 − J1 I3c1/I0) ϕx,xtt + (J4c1 − J1 I3c1/I0) ϕy,ytt,

(18a)

L21
(
w0)+ L22 (ϕx) + L23

(
ϕy
)
+ L24 (ψ) =

(
K2 − J2

1 /I0
)

ϕx,tt + (c1 I3 J1/I0 − c1 J4)w0
,xtt

(18b)

L31
(
w0)+ L32 (ϕx) + L33

(
ϕy
)
+ L34 (ψ) =

(
K2 − J2

1 /I0
)

ϕy,tt + (c1 I3 J1/I0 − c1 J4)w0
,ytt
(18c)

in which, the coefficients Lij are found in the Ref. [5].
The system of Eqs. (18) includes four unknown functions w0, ϕx, ϕy and ψ so it is nec-

essary to find the fourth equation relating to these functions by using the compatibility
equation.

L11 (ϕx) + L12
(

ϕy
)
+ L13

(
w0)+ L14 (ψ) + P

(
w0, ψ

)
= 0, (19)

where P
(
w0, ψ

)
= ψ,yyw0

,xx − 2ψ,xyw0
,xy + ψ,yyw0

,yy.
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4. ANALYTICAL SOLUTIONS

The simply supported boundary conditions of the ES-FGM plate are [5, 20]:
a) Plate edges are simply supported and freely movable (FM). The associated boundary
conditions are

w0 = Nxy = ϕy = Mx = Px = 0, Nx = Nx0 at x = 0 and x = a,

w0 = Nxy = ϕx = My = Py = 0, Ny = Ny0 at y = 0 and y = b.
(20)

b) The edges are simply supported and immovable (IM). The associated boundary con-
ditions are

w0 = u0 = ϕy = Mx = Px = 0, Nx = Nx0 at x = 0 and x = a,

w0 = v0 = ϕx = My = Py = 0, Ny = Ny0 at y = 0 and y = b,
(21)

in which, Nx0, Ny0 are pre-buckling force resultants in directions x and y, respectively.
To solve Eqs. (18) and (19) for unknowns w0, ϕx, ϕy and ψ, and with the consideration

of the boundary conditions (20)–(21), we assume the following approximate solutions

w0 = W (t) sin αx sin βy, ϕx = ϕx (t) cos αx sin βy, ϕy = ϕy (t) sin αx cos βy,

ψ = A1 cos 2αx + A2 cos 2βy + A3 sin αx sin βy + Nx0y2/2 + Ny0x2/2.
(22)

Therein, α =
mπ

a
, β =

nπ

b
, m, n = 1, 2, . . . are numbers of half waves in x, y direc-

tions, respectively, and W is amplitude of deflection. Also, Ai (i = 1− 3) are coefficients
to be determined.

After substituting Eqs. (22) into Eq. (19), the coefficients Ai (i = 1− 3) are found

A1 = W2 β2/
α2

∆
32B11

, A2 = W2 α2

β2
∆

32B22
, A3 =

H2

H1
ϕx +

H3

H1
ϕy +

H4

H1
W.

Introduction of Eqs. (22) into Eqs. (18), and applying the Galerkin method for the
resulting equation yields

l11W+l12ϕx + l13ϕy + l14ϕxW + l15ϕyW + l16W2 + l17W2 −
(

Nx0α2 + Ny0β2)W
+16q/mnπ2 = n2W,tt + 2εI0W,t + ρ2mπ/aϕx,tt + ρ2nπ/bϕy,tt ,

(23a)

l21W + l22ϕx + l23ϕy + l24W2 = ρ1ϕx,tt + ρ2mπ/aW,tt , (23b)

l31W + l32ϕx + l33ϕy + l34W2 = ρ1ϕy,tt + ρ2nπ/bW,tt , (23c)

m, n are odd numbers and ρ1 = K2 − J2
1 /I0, ρ2 = c1 I3 J1/I0 − c1 J4, specific expressions of

coefficients lij (i = 1÷ 3, j = 1÷ 3) , n1, n2 are found in the Ref. [5].
Considering the ES-FGM plate with all edges which are simply supported and im-

movable under thermal load, the condition expressing the immovability on the edges,
u0 = 0 (on x = 0, a) and v0 = 0 (on y = 0, b), is satisfied in an average sense as [5, 20]

b∫
0

a∫
0

∂u0

∂x
dxdy = 0,

a∫
0

b∫
0

∂v0

∂y
dxdy = 0. (24)
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From Eqs. (6), (12) and (20), we obtain the following expressions

u0
,x = B22/∆ψ,yy − B12/∆ψ,xx + b11ϕy,y + b12ϕx,x + b13w0

,xx

+ b14w0
,yy − b14ϕ1 − B28B12/∆ϕ1y + B18B22/∆ϕ1x −

(
w0

,x
)2

/2,

v0
,y = B11/∆ψ,xx − B12/∆ψ,yy + b21ϕx,x + b22ϕy,y + b23w0

,xx

+ b24w0
,yy − b25 ϕ1 − B18B12/∆ϕ1x + B11B28/∆ϕ1y −

(
w0

,y

)2
/2.

(25)

Putting Eqs. (22) into Eq. (25) then substituting the obtained result into Eqs. (24), we have

Nx0 = e11W + e12ϕx + e13ϕy + e14W2 + e15ϕ1 − e16ϕ1x , (26a)

Ny0 = e21W + e22ϕx + e23ϕy + e24W2 + e25ϕ1 − e26ϕ1y . (26b)

Replacing Eqs. (26a), and (26b) into the equations of motion (23), we have[
l11 − e15α2ϕ1 − e25β2ϕ1 + e16α2ϕ1x + e26β2ϕ1y

]
W + l12 ϕx + l13ϕy + l14ϕxW + l15ϕyW

+l16W2 + l17W3 + 16/
(
mnπ2) q = n2W,tt + 2εI0W,t + ρ2mπ/aϕx,tt + ρ2nπ/bϕy,tt ,

(27a)
l21W + l22ϕx + l23ϕy = ρ1ϕx,tt + ρ2mπ/aW,tt , (27b)

l31W + l32ϕx + l33ϕy = ρ1ϕy,tt + ρ2nπ/bW,tt . (27c)

Taking linear parts of the set of Eqs. (27) and putting q = 0, the natural frequencies
(ω) of the plate can be determined directly by solving determinant∣∣∣∣∣∣∣∣

l11 − e15α2ϕ1 − e25β2ϕ1
+e16α2ϕ1x + e26β2ϕ1y + n2ω2 l12 + ρ2

mπ

a
ω2 l13 + ρ2

nπ

b
ω2

l21 + ρ2αω2 l22 + ρ1ω2 l23
l31 + ρ2βω2 l32 l33 + ρ1ω2

∣∣∣∣∣∣∣∣ = 0. (28)

Solving Eq. (28) yields three angular frequencies of the ES FGM plate, and the small-
est one is being considered.

The plate is placed in the environment whose temperature is steadily increased from
the beginning value Ti to the last value Tf , the temperature difference ∆T = Tf − Ti is a
constant.

ϕa is determined,

ϕa = P∆T; P = h (Emαm + (Emαcm + Ecmαm) / (N + 1) + Ecmαcm/ (2N + 1)) .
(29)

5. NUMERICAL EXAMPLES AND DISCUSSION

In this section, the components of the material are silicon nitride Si3N4 (ceramic) and
SUS304 stainless steel (metal). The material properties Pr in the formula Eq. (3) are shown
in Ref. [5, 7], and a Poisson’s ratio v = 0.3 is chosen for simplicity.

We have assumed that the stiffeners are made of full metal, so E0 = Em. The param-
eters for the stiffeners are: h1 = h2 = 0.08 (m), s1 = s2 = 0.15 (m), d1 = d2 = 0.008 (m),
E0 = Em, α0 = αm.
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5.1. Numerical verification
In particular case of a FGM plate without stiffeners under the conditions: A1 = A2 =

0, we have compared the numerical results of un-stiffened FGM plate with Ungbhakorn
and Wattanasakulpong [8]. They used the energy function and choosing results under
the type of moving position function for study and without eccentrically stiffener. From
the Tab. 1, it can be seen that the present values are not significantly different from the
result in [8].

Table 1. Comparison of fundamental frequency parameter γ = ωh
√

ρc

Ec
for Al/Al2O3 square

plates without elastic foundations and (a/b = 1, (m, n) = (1, 1), ∆T = 0)

Source
a = 10h a = 5h

N = 0.5 N = 1.0 N = 10.0 N = 0.5 N = 1.0 N = 10.0
Ref. [8] 0.0490 0.0442 0.0364 0.1807 0.1631 0.1301
Present 0.05 0.0440 0.0369 0.1829 0.1640 0.1300

5.2. Natural frequencies
The effects of elastic foundations on the natural frequency of the eccentrically stiff-

ened plate are shown in Tab. 2. Increasing K1 leads to increasing the natural frequencies
of the ES FGM plates. The Tab. 2 also shows that the lowest natural frequency corre-
sponds mode (m, n) = (1, 1).

Table 2. Effect of the elastic foundations, stiffener and buckling mode (m, n)
on natural frequencies of the ES-FGM plates

ω1

(m = 1, n = 1)
ω2

(m = 1, n = 3)
ω3

(m = 1, n = 5)
ω4

(m = 3, n = 5)
K1

(GPa/m)
Stiffener Unstiffener Stiffener Unstiffener Stiffener Unstiffener Stiffener Unstiffener

0 28800 2278 43805 11126 81230 27723 108278 35552
0.1 28811 2409 43812 11153 81232 27734 108281 35561
0.3 28832 2651 43826 11207 81240 27756 108287 35576

0.35 28838 2708 43831 11220 81243 27761 108288 35580
0.5 28854 2872 43841 11261 81248 27777 108292 35593
0.7 28875 3079 43854 11316 81255 27798 108298 35611

5.3. Nonlinear dynamic response
The nonlinear dynamic response of stiffened and un-stiffened FGM plate is analyzed

in Fig. 2. It is obvious that the result is a support for dynamic response and vibration of
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ES-FGM plate. In another word, the vibration amplitude of the FGM plate is strongly
decreased by the stiffeners.

The effect of temperatures ∆T (K) = (0, 300, 400) on the nonlinear dynamic response
of the ES-FGM plates is shown in Fig. 3. It can be seen that the dynamic response ampli-
tude increases when the temperature ∆T increases. It means that the dynamic response
amplitude is in direct proportion to the temperature ∆T.
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Fig. 4. Effect of power law index N on nonlinear dynamic response
of the ES-FGM plates under blast load

Fig. 4 shows the effect of the power law index N on the nonlinear dynamic response
of the ES-FGM plates with a/b = 1, a/h = 20 of the ES-FGM plate with N = 0, 1, 5. Ob-
viously, the amplitude of the nonlinear dynamic response of the ES-FGM plate is directly
proportional to the power law index N.
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Figs. 5 and 6 illustrate the effect of geometric factors of the ES-FGM plates on non-
linear dynamic response with N = 1. From Fig. 5, it can be seen that the amplitude of
the ES FGM plates increases when increasing the ratio a/b. Fig. 6 shows the effect of the
ratio b/h on the nonlinear dynamic response of the ES-FGM plates. When increasing the
ratio b/h, the plate fluctuates more strongly.
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Fig. 8. Effect of the Pasternak foundation on
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plates under blast load

Figs. 7 and 8 show the effect of elastic foundations on the nonlinear dynamic re-
sponse of the ES-FGM plates with a/b = 1, a/h = 20, N = 1. Fig. 7 presents the effect
of the Winkler foundation. It is clear that the plate fluctuation amplitude decreases only
when the module K1 of Winkler foundation increases. In conclusion, the plate fluctuation
amplitude is in inverse proportion to the module K1 of Winkler foundation. The param-
eter K2 of the Pasternak foundation also has similar behavior. The graphs in Figs. 7 and 8
illustrate the beneficial effects of elastic foundations on the nonlinear dynamic response
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of the ES-FGM plates. The amplitude of the plate decreases when it is rested on elastic
foundations.

6. CONCLUDING REMARKS

In this paper, the nonlinear dynamic of the ES-FGM under blast and thermal loads in
thermal environment are studied and discussed. Based on Reddy’s TSDT, stress function,
Galerkin method and fourth order Runge–Kutta method, some general inferences are
mentioned as below:

- The stiffener system strongly enhances the load-carrying capacity of the ES-FGM
plates.

- The elastic foundations and temperature have strong effect on the nonlinear dy-
namic response of the ES-FGM plates, and the dynamic response amplitude of the plate
increases when the temperature increases.

- Geometrical parameters (a/b, a/h ratios) and the volume ratio N have extremely
impacted on the nonlinear dynamic responses of the ES-FGM plates.
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