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Abstract. A closed-form solution for free vibration is constructed and used for obtaining
explicit frequency equation and mode shapes of Timoshenko beams with arbitrary num-
ber of cracks. The cracks are represented by the rotational springs of stiffness calculated
from the crack depth. Using the obtained frequency equation, the sensitivity of natural
frequencies to crack of the beams is examined in comparison with the Euler-Bernoulli
beams. Numerical results demonstrate that the Timoshenko beam theory is efficiently ap-
plicable not only for short or fat beams but also for the long or slender ones. Nevertheless,
both the theories are equivalent in sensitivity analysis of fundamental frequency to cracks
and they get to be different for higher frequencies.

Keywords: Timoshenko beams, multiple cracked beams, natural frequencies, sensitivity
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1. INTRODUCTION

About a century has passed from the date when Timoshenko Beam Theory (TBT)
was proposed and although it is not straightforward as the classical Euler-Bernoulli
Beam Theory (EBT) the TBT is not less popular nowadays than the classical one [1]. Gen-
eralized by taking into account the shear deformation and rotary inertia the TBT has
extended applicability of beam theory to analysis of short or fat beams which are more
widely encountered in the practice of structural engineering. Basics for dynamic analysis
of Timoshenko beams are provided in numerous publications on structural dynamics, for
example, the References [2—4]. Recently, because of potential hazards produced by pres-
ence of a crack in a structure, dynamic analysis of cracked structures gets an enormous
attention of researchers and engineers. Numerous methods were proposed for modal
analysis and crack detection based on the classical EBT [5-10]. Among the obtained
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results it is worth to note that a closed-form solution for the vibration mode of Euler—
Bernoulli beams with multiple cracks was conducted and used for obtaining an explicit
expression for characteristic equation of the beam [11,12]. Vibration of cracked Timo-
shenko beams has been studied by numerous authors in [13-18] among that the studies
by Li [15] and Aydin [18] are noteworthy by their achievements in modal analysis of
cracked Timoshenko beams. Some particular solutions of the crack detection problem
for Timoshenko beam were obtained earlier in [13,14,17] and recently by Khaji and his
coworkers in [19,20] using the conventional methods.

In the present paper a closed-form solution for free vibration of Timoshenko beam
with arbitrary number of cracks is conducted and used for constructing an explicit ex-
pression for both frequency equation and mode shape of the beam. Using the obtained
frequency equation, the sensitivity of natural frequencies to crack of the beams is ex-
amined in comparison with the Euler-Bernoulli beams [12]. Numerical results demon-
strate that the Timoshenko beam theory is efficiently applicable not only for short or thick
beams but also for the long or slender one. Nevertheless, both the theories are equivalent
in sensitivity analysis of fundamental frequency to cracks and they get to be different in
the analysis of higher frequencies.

2. A CLOSED-FORM SOLUTION FOR FREE VIBRATION
OF TIMOSHENKO BEAM WITH MULTIPLE CRACKS

Consider a uniform beam of length ¢; material density (p); elasticity (E) and shear
(G) modulus; area A = b x h and moment of inertia [ = bh3 /12 of cross section. Assum-
ing first order shear deformation (Timoshenko) theory of beam, the displacement field in
cross-section at x and height z from the neutral axis is

u(x,z,t) = up(x,t) —z0(x,t); w(x,z,t)=wy(x,t), (1)

with ug(x, t), wo(x, t),0(x, t) being respectively the displacements and slope at central axis.
Using the constituting equations

€x = dug/9dx —z00/9X; Yz = 0wo/0x —0; 0y = E€y; Taz = KGYys. (2)
and Hamilton principle, the equations for free vibration of the beam can be established as
pAwW — kGA(w” —0") =0; plf —EI0" —xGA(w' —0) =0, (3)
where @ = 9%w/9t2,w' = ow/dx,w” = d*w/dx% and 6 = 9%0/9t2,0' = 90/9x,8" =
026 /9x2.
Seeking solution of (3) in the form
w(x, t) = W(x)e“"; 8(x,t) = O(x)e", (4)
one gets
W?oW(x) +kG(W' — @) =0, w?pI®(x)+EIQ"(x) +kGA(W —©)=0. (5)

Furthermore, it is assumed that the beam has been cracked at positions ¢;,j =
1,...,n and the cracks are modeled by rotational springs of stiffness K; calculated from
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crack depth [8]. Therefore, conditions that must be satisfied at the crack section are
W(ej+0) = W(e; —0); ®(ej+0) = O(e; — 0) + M(e))/K; ;
Qej +0) = Q(e; — 0) = Q(ej); M(ej+0) = M(e;—0) = M(e;),

where N, Q, M are respectively internal axial, shear forces and bending moment at sec-
tion x

(6)

M = EI®); Q =«xGA(W,—0). (7)
Substituting (7) into (6) one can rewrite the latter conditions as
W(ej+0) = W(ej —0) = W(ej); ©L(ej+0) =0} (ej—0)=0'(ej);
O(e; +0) = O(ej — 0) + 7jOL(¢j); Wy(ej+0) = Wy(ej —0) + 7@ (ej); vj = EI/Kj.8
Seeking solution of Eq. (5) in the form Wy(x) = Cpe*, ®@g(x) = Cye* one is a]ile)
to obtain so-called characteristic equation

AM4+bA2—c=0, ©9)

b=a(1+B); c=a(t—aB); a =pw?/E; B=E/kG, T=A/IL (10)

This is a square algebraic equation with respect to 7 = A? that can be elementarily
solved to give roots

m=(—b+ \/M)/Z; nzz—(b+\/mw2. (11)

Note that in the case if c = 0 the Eq. (9) has the roots

Mo = +iVh = +iw\/p(1+ B)/E; A34 = 0. (12)

This occurs when w = w. = 1/12xG/ph? acknowledged as cut-off frequency of
the beam. Otherwise, the Eq. (9) has the roots

Al,ZZikl; )L3,4::|:ik2; klz\/(\/b2—|—4c—b)/2, k2=\/(\/b2+4c—|—b)/z, (13)

for frequency less than cut-off one, w < w. = /kGA/pl. Since the cut-off frequency is
very high, vibration of the beam is often investigated in the lower frequency range (0, w,).
Thus, in the frequency range, general continuous solution of Eq. (5) can be represented as

Wo(x) = Cy coshkix + Cpsinhkyx + Cs coskpx + Cy sinkpx, (14)
Oo(x) = r1Cy sinhkyx + r1Cy cosh kyx 4 r2Cz sinkpx — 1,Cy cos ko x, (15)
r = (pr/Kqu +ki);1m = (pwz/Ksz — k). (16)

Particularly, solution (14) and (15) satisfying the conditions
Wo(0) = 0; Wy(0) = 1;00(0) = 1;0;(0) =0,
is
Sw(x) = Sysinhkyx + Sy sinkyx; Sg(x) = 1151 coshkyx — 1S, cos kx, (17)
S1 = (r2+ka)/(rika +r2k1); Sa = (11 — k1) / (rika + r2ky). (18)
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Using obtained above particular solution, general solution of Eq. (5) satisfying con-
ditions (8) at cracks is represented by

W(x,w) = C1W1(k1,x) + CzWQ(k1,X) =+ C3W3(k2, x) + C4W4(k2,x), (19)
O(x,w) = C1O1(k1,x) + C205(k1, x) + C303(ky, x) + C4O4(ka, x), (20)

where

n n
Wi (x) = coshkix + Y 1K (x —ej); Wa(x) = sinhkix + ) poiKe(x —¢j),
j=1 j=1

n n
Ws(x) = coskox + Y pziKo(x —ej); Wa(x) = sinkox + ) pajKo(x —¢)),
j=1 j=1

(21)
n n
@1 (X) =n sinhklx + 2 “l/lleg(X — €j),‘ @2(3() =n COShklx + Z yzng(x — 6]'),
j=1 j=1
n n
O3(x) = rpsinkyx + Y u3iKo(x —€;); Ou(x) = —rpcoskox + Y paiKo(x —¢j),
j=1 j=1
] 0: x <0; / ] 0: x <0
Ku(x) = { Su(x): x>0; Kel¥)= { Sh(x): x> 0;
] 0: x <0 / _J 0: x <0
K(x) = { Se(x): x>0, Kelx)= { Sh(x) : x > 0; (22)

j—1
i = {Lk(ej) + ) maSo(ej — e,-)}; k=1234%j=12...n
i=1

L1 (x) = kli’l coshklx; Lz(x) = kli’l sinh klx; L3(x) = kz]’z COs kzx; L4(x) = k21’2 sin kzx.
(23)

3. NATURAL FREQUENCIES AND MODE SHAPES

In this section, frequency equation is obtained for beam with classical boundary
conditions such as simply supported (SS), clamped (CC) beam and cantilever (clamped
and free (CF) end beam). The boundary conditions are expressed as follow:

e For SS-beam: W(0) = M(0) = W(¢) = M({) = 0. In this case

C1Wi(k1,0) + CaWa(kq,0) 4+ C3W3(kp, 0) + C4Wy(kp,0) = 0= C; +C3 =0,
C10](k1,0) 4+ C20%(k1,0) + C305(k2,0) + C4@)(kz,0) = 0 = r1k1Cy + r2koC5 = 0,
from that we have got C; = C3 = 0 and
CoWa(k1,£) + CyWy(kp, £) = 0; Co®f(kq,£) + C4@)(ky, £) = 0. (24)

Therefore, frequency equation is obtained in the form Wy(ky,£)®)(ko,£)
—W4(k2, E)@’ (kl,g) =0or

dss(w) + "112]52 )+ H4]S4(€ — €] )]+ Z ‘lejll4]524(€],€k) 0, (25)
j=1 k=1
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where
dsg(a)) = (1’2k2 - Vlkl) sinhkﬂ Sinsz,

Sz(f — 6]) = [rszSw(g — 6]) — Sé(g — 6])] sinsz,
5_4(€ — 8]) = [Sé(ﬁ — 6]) — rlklsw(é — 6])] sinhklﬁ,
524(6]', Ek) = Sw(g — 6])59(5 — Ek) — Sw(g — ek)Sé(f — 6])

For uncracked beam, the frequency equation (24) is reduced to sink,¢ = 0 that
leads to k¢ = jm;j = 1,2,3, ... and in the case of single crack, n = 1, Eq. (25) is

fss(w) +vgss(e,w) =0, (27)

(26)

with
fss(w) = sinhk1€ sinkzﬁ,
gss(e,w) = rakySq sinh kjesinh kg (¢ — e) sinkal 4 r1k1 Sy sinkpe sinky (¢ — e) sinh kq £.
The latter equation has been obtained in [19].
e For CC-beam: W(0) = ©(0) = W(¢) = ©(¢) = 0. The conditions at x = 0 lead to
C1 +C3 =0and r1Cy — rpCy4 = 0. So that

W(x) = Ci1Ly1(x) + CoLy2(x); ©(x) = CiLg1(x) 4+ CoLgp(x) (28)
with
Lo1(x) = Lot (x) + ) fjKow(x —€); Lua(x) = Loa(x) + Y 13K (x — ¢;); (29)
j=1 j=1

j=1 j=1
Loy = coshkix —coskpx; Lop = rasinhkyx +7ry sinkox; flyj = p1j— paj; flaj = raph1j +r1ps);
Loz = rysinhkyx — rp sinkyx; Log = r172(coshkix — coskpx).
Therefore, frequency equation for clamped beam is derived from the conditions
W(l) = CiLu1 () + CoLun(€) = 0; ©(f) = CiLe1(£) + CoLe2(€) =0 (30)
as Ly (¢)Lgp(£) — Lyp(£)Ler (£) = 0 or
dec(w) + Z; fi1;51(€ — ej) + iz S3 (¢ — ¢;)] + ‘kil fi1jfiscS13(ej, e) =0, (31)
= Jk=

where
dec(w) = L1 () Loa(¢) — Loa(€) Loz (£),

(
S1(¢ —ej) = Loa(£)Sw(€ — ;) — Loa(£)Se(£ — ¢5),
S3(L —ej) = Lo1(£)Se(£ — ;) — Loz (£)Sw (L —¢j),
S13(ej ex) = Sw(l —ej)Se(€ — ex) — Sw(l — ex)Se (L — ¢;).
In the case of single crack, Eq. (31) is simplified [19]
dec(w) +7{[La(e) — Ls(e)]S1(€ =€) + [raLa(e) + riLs(e)]Ss(£ —e)} =0,

(32)
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or
fee(@) +vgec(e,w) =0, (33)
with
fee(w) = 2r17r2(1 — cosh ki€ coskpl) + (15 — 13) sinh k£ sin ko/;
8ee(e,w) = [L1(e) — La(e)[{Loa(€)Sw(l —e) — Loa (£)Sp(£ — ) }+
+ [1’2L1(€) + 1’1L3(€)]{L01(£)59(€ — E)S — L03(€)Sw(£ — 6)}

e For CF-beam: W(0) = ©(0) = M(¢) = Q(¢) = 0. It is found above that conditions for
clamp at x = 0 lead the solutions (19), (20) to expressions (27), so that conditions for free
end at x = ¢ now yield

Ci[Li1 (€) = Lo ()] + Co[Lun(£) — Lea(£)] = 0; CiLgy () + CaLgp(£) =0,  (34)
that allow one to obtain frequency equation for CF-beam in the form
[Li1 (£)Lop(€) — Liyp (£) Ly (£)] — [Lo1(£) Lgy(£) — Lga(£) Ly (€)] = O. (35)
The latter equation can be rewritten as
n n
der(w) + Y [1jGr(0 —¢)) + f13iG3 (L —ej)] + ) jjfizcGus(eje) =0,  (36)
j=1 jk=1
where
der(w) = [Liy (€) — Los(£)]Loa(€) — [Loa(£) — Loa(€)]Los(€),
Gi1(€ —ej) = Loa(£)[S5, (£ —¢j) — Sp(£ —¢;)] — [Lon(£) — Loa(£)]Sp(£ —¢)),
G3(L —ej) = [Loy (£) — Los(£)]Sp(£ — ;) — Log(€)[Si (€ —€j) — So(£ —¢))],
Gis(ej ex) =[S (£ —e;) —So(£—e;j)]Sp(£—er) — [Si,(£—ex) —So (£ —ex)]]Sp (£ —¢)).
Similarly, one can obtain frequency for beam with single crack in the form [19]
der(w) +9{[L1(e) — L3(e)]G1 (£ —e) + [raL1(e) +r1Ls(e)]Gs(£ —e)} =0,  (38)

Solving Egs. (25), (31) and (36) with respect to w gives rise natural frequencies
wj,j =1,2,3,... Every natural frequency w; allows one to calculate first the wave num-
bers kyj, ky; by using (13) and then associated mode shape as

QJ(X) = D]'[W4<k2]', L)Wz(klj, X) - Wz(klj; L)W4(k2]‘,x>]. (39)

In latter equation arbitrary constant D; is determined by a chosen condition for
normalization.

(37)

4. NUMERICAL ANALYSIS

To validate the theoretical development, natural frequencies computed by differ-
ent methods (analytical method [3]; Galerkin’s method [17] and the present method) for
simply supported beam are compared and given in Tabs. 1-2. The Tables show that
the analytical method, Galerkin’s and present methods give the same results in comput-
ing natural frequencies of intact (uncracked) beam structures with different slenderness
ratios. However, disagreement of the methods is apparent when they are applied for
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Table 1. Comparison of frequency parameter (A = [w?pA/EI]'/*) computed by using
different beam theories and methods for simply supported uniform intact beam

Eigenvalue No 1 2 3 4 5
EBT [3] T 27 3 4 5
EBT - Present 3.1416 6.2832 9.4248 12.5664 15.7080
TBT [3] 3.1155 6.0867 8.8180 11.2766 13.4740
TBT - Present 3.1157 6.0907 8.8405 11.3431 13.6132
Beam parameters: E = 200 GPa; p = 7855 kg/ m3v = 0.3;
k=5/6;L=1.0;b=0.1h =0.1 (m)

Table 2. Comparison of natural frequencies computed by using different beam theories
and methods for simply supported cracked beam with various slenderness (L/h)
and single crack at the beam middle

1 2 3 4

wo ‘ wc/wo wo ‘ a)c/wo wo ‘ wc/a)o wo ‘ wc/a)o
L/h=15
EBT-GM [17] |303.64 | 0.8836 | 1214.56 | 0.9801 | 2732.77 | 0.9185 | 4808.26 | 0.9673
EBT - Present | 303.64 | 0.8383 | 1213.10 | 1.0000 | 2732.80 | 0.8740 | 4851.50 | 1.0000
TBT-GM [17] |301.34 | 0.8844 | 1179.28 | 0.9806 | 2565.03 | 0.9234 | 4366.67 | 0.9707
TBT - Present | 301.30 | 0.8397 | 1179.30 | 1.0000 | 2565.00 | 0.8827 | 4367.70 | 1.0000
L/h =10
EBT-GM [17] | 455.46 | 0.8268 | 1821.85 | 0.9588 | 4099.15 | 0.8906 | 7287.39 | 0.9397
EBT - Present | 455.46 | 0.7319 | 1819.70 | 1.0000 | 4099.20 | 0.8430 | 7277.30 | 1.0000
TBT-GM [17] | 447.84 | 0.8293 | 1710.02 | 0.9613 | 3599.00 | 0.9030 | 5918.77 | 0.9509
TBT — Present | 447.80 | 0.7857 | 1710.00 | 1.0000 | 3599.00 | 0.8628 | 5918.80 | 1.0000
L/h=5
EBT-GM [17] |910.92 | 0.6855 | 3643.72 | 0.8721 | 8198.31 | 0.8245 | 14574.77 | 0.8545
EBT - Present | 910.92 | 0.6631 | 3639.30 | 1.0000 | 8198.30 | 0.7922 | 14555.00 | 1.0000
TBT-GM [17] | 855.01 | 0.6985 | 2959.38 | 0.8936 | 5643.70 | 0.8686 | 8551.50 | 0.9069
TBT - Present | 855.00 | 0.6799 | 2959.40 | 1.0000 | 5643.70 | 0.8484 | 8511.50 | 1.0000
E = 62.1GPa; G = 23.3 Gpa; p = 2770 kg/m>; v = 0.3;

Beam parameters K =5/6;e/L =05:a/h =05

EBT-Euler Beam Theory; TBT-Timoshenko Beam Theory; GM—-Galerkin Method;
wy - natural frequency (Rad/s) of intact beam;
w./ wy - frequency of cracked beam/frequency of intact beam

Frequency No

cracked beam and miscalculation of Galerkin’s method can be observed from that it re-
sults in reduction of second and fourth frequencies as the crack appeared at the middle of
beam whereas the frequencies should be unchanged due to crack. Finally, it can be seen
from Tab. 2 that Timoshenko beam model is more useful to apply for calculating natural
frequencies of cracked beam. Note, all the results related to Euler-Bernoulli beam pro-
vided herein as EBT-present are obtained for corresponding beam parameters by using
the theory developed in Ref. [12].

Effect of slenderness ratio on natural frequencies computed by different beam the-
ories is demonstrated in Tab. 3. The data depicted in Tab. 3 show that Timoshenko beam
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Table 3. Comparison of frequency parameter computed by using different beam theories
for simply supported uniform intact beam with various slenderness (L/h)

Eigenvalue No ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
L/h =100(L =10,h =0.1)

Euler-Bernoulli beam [12] 0.3142 0.6283 0.9425 1.2566 1.5708
Timoshenko beam - present 0.3141 0.6281 0.9418 1.2549 1.5675
L/h=50(L=5h=0.1)

Euler-Bernoulli beam [12] 0.6283 1.2566 1.8850 2.5133 3.1416
Timoshenko beam - present 0.6281 1.2549 1.8793 2.4999 3.1157

L/h=30(L=3,h=0.1)
Euler-Bernoulli beam [12] 1.0472 2.0944 3.1416 4.1888 5.2360
Timoshenko beam - present 1.0462 2.0866 3.1157 4.1286 5.1213
L/h=20(L=2,h=0.1)
Euler-Bernoulli beam [12] 1.5708 3.1416 4.7124 6.2832 7.8540
Timoshenko beam - present 1.5675 3.1157 4.6277 6.0907 7.4963
L/h=15(L =15k =0.1)
Euler-Bernoulli beam [12] 2.0944 4.1888 6.2832 8.3776 10.4720
Timoshenko beam - present 2.0866 4.1286 6.0907 7.9513 9.7019
L/h=10(L=1,h=0.1)
Euler-Bernoulli beam [12] 3.1416 6.2832 9.4248 12.5664 15.7080
Timoshenko beam - present 3.1157 6.0907 8.8405 11.3431 13.6132
L/h=5(L=05h=0.1)
Euler-Bernoulli beam [12] 6.2832 12.5664 18.8496 25.1328 31.4160
Timoshenko beam - present 6.0907 11.3431 15.6790 19.3142 22.4441
Beam parameters: E = 200 GPa; p = 7855 kg/m?; v = 0.3;x = 5/6;
Ay = [wipA/EIY*

theory gives rise almost the same natural frequencies as the Euler-Bernoulli beam theory
for the beams with slenderness ratio greater 20 (acknowledged as long or slender beams).
This fact allows one to make a conclusion that Timoshenko beam theory is useful not only
for short or thick beams but also for long or slender ones while the Euler-Bernoulli the-
ory is applicable only for the long or slender beams. In case of cracked beam, natural
frequencies of Timoshenko beam with single crack computed by the present method are
compared to those given in Ref. [19] that are obtained by the conventional transfer matrix
method (see Tab. 4). The comparison demonstrates very good agreement of the results,
especially, some frequencies are computed identically (when they are unaffected by pres-
ence of crack). Thus the proposed in this study method is validated not only in the case
of uncracked beam but also for beam with cracks. Furthermore, natural frequencies of
cracked Timoshenko beam normalized by those of intact one are computed as function
of crack position along the beam span for various slenderness ratios (10,20, 30). The fre-
quency ratios (cracked to intact) acknowledged as sensitivity of natural frequencies to
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Table 4. Comparison of natural frequencies with those given in Khaji et al. [19] for Timoshenko
beam in case of single crack and various boundary conditions (SS, CC and CF-beams)

Freq. L/h=3 L/h=5 L/h=7 L/h=9
No | Present ‘ Khaji | % | Present ‘ Khaji | % | Present ‘ Khaji | % | Present ‘ Khaji ‘ %
Simply supported beam (SS)
1 | 6909.92 | 6781.8 |1.8| 2919.21 | 28773 |1.4| 1599.09 | 1580.3 | 1.1 | 1006.68 | 996.9 | 0.9
2 27316.17 | 27316.2 | 0.0 | 12222.26 | 12222.2 | 0.0 | 6803.30 | 6803.3 | 0.0 | 4293.28 | 4293.3 | 0.0
3 | 42979.87 | 42718.8 | 0.6 | 21132.25 | 21006.4 | 0.6 | 12504.58 | 12430.6 | 0.6 | 8633.80 | 8177.0 | 0.5
4 | 64534.74 | 64534.6 | 0.0 | 35435.66 | 35435.8 | 0.0 | 21681.69 | 21681.7 | 0.0 | 14556.97 | 14557.0 | 0.0
Clamped end beam (CC)
1 13700.28 | 13628.4 | 0.5 | 6244.02 | 6205.3 | 0.6 | 3530.10 | 3509.1 | 0.6 | 2255.5 | 2243.2 | 0.5
2 31009.05 | 31009.0 | 0.0 | 15650.89 | 15650.9 | 0.0 | 9335.63 | 9335.6 | 0.0 | 6134.70 | 6134.7 | 0.0
3 | 44150.76 | 43315.8 | 1.8 | 23731.61 | 23599.0 | 0.5 | 14875.08 | 14796.1 | 0.5 | 10149.80 | 10098.1 | 0.5
4 | 64534.74 | 64534.6 | 0.0 | 37268.75 | 37268.75 | 0.0 | 23764.42 | 23764.4 | 0.0 | 16475.53 | 16475.5 | 0.0
Cantilever beam (CF)
1 3157.3 | 31349 | 0.7 | 1228.7 12229 (05| 6452 6429 103 | 396.0 3949 | 03
2 12826.6 | 12664.4 | 1.2 | 5954.8 5888.2 |1.1| 3386.0 | 33529 |09 | 2170.8 | 21522 | 0.8
3 33422.2 | 33381.4 | 0.1 | 16510.6 | 16504.4 | 0.0 | 9684.8 | 9683.4 | 0.0 | 6296.1 | 6295.6 | 0.0
4 49075.2 | 48898.9 | 0.3 | 5443.6 | 25326.0 | 0.4 | 15583.1 | 15506.8 | 0.5 | 10490.0 | 0438.8 | 0.5

Beam parameters:E =210 GPa,p =7860 kg/m3,b =125 mm,h=25mm,x=5/6, fy=wy/2m (Hz),k=1,2,3,4

crack are compared to those obtained by using Euler—Bernoulli beam theory and shown
in Figs. 1-3 corresponding to the simply supported, clamped-clamped and clamped-
free boundary conditions. Obviously, the frequency sensitivities computed for both the
beam theories are identical as the slenderness ratio equals to 30 and they get to be ap-
parently deviated for the ratio L/h = 10. In the latter case, natural frequencies com-
puted by Euler-Bernoulli beam theory are more sensitive to crack. Note, that the sensi-
tivity of fundamental frequency of cantilever beam is independent on which beam theory
is applied.

To investigate combined effect of the beam theories, slenderness ratio and mul-
tiple cracks on natural frequencies, the frequency parameter A\, = [w?pA/EI]V4 k =
1,2,3,4,5 are computed for various slenderness L/h = 5,10,20(h = 0.2,0.1,0.05,L = 1),
number of cracks n = 0,1, 2, 3 using the different beam theories (EBT and TBT). Deviation
of the frequency parameters computed by the EBT and TBT is calculated and measured
in percent (%).

Obviously, the frequency parameter computed for Euler-Bernoulli intact beam is
independent on the beam thickness (1) for the beam length (L) fixed, as can be seen in
Tab. 5, it is dependent only on the beam length. However, as a crack occurred in beam
the parameter decreases with increasing beam thickness and number of cracks. Unlikely,
the frequency parameter of Timoshenko beam is always decreasing as the beam thickness
and number of cracks are growing. Difference between the beam theories measured by
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Fig. 1. Change (induced by single crack of depth 30%) in natural frequencies computed by EBT
and TBT in various slenderness of uniform simply supported beam
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Fig. 2. Change (induced by single crack of depth 30%) in natural frequencies computed by EBT
and TBT in various slenderness of uniform clamped end beam
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Fig. 3. Change (induced by single crack of depth 30%) in natural frequencies computed by EBT
and TBT in various slenderness of uniform cantilevered beam

deviation of the frequency parameter is significant and rising with mode number. How-
ever, the deviation decreases not only as usually for increasing slenderness ratio but also
when number of cracks rises, except the case of fundamental frequency.

Table 5. Comparison of natural frequencies computed by Timoshenko and Euler-Bernoulli beams
with various number of cracks (equal depth 30%), slenderness ratio and boundary conditions

L/h No. No crack Single crack at (1/6) |Double crack at (1/6;1/2) | Triple crack at (1/6;1/2;5/6)
Freq.| TBT | EBT [6(%)| TBT | EBT [6(%)| TBT | EBT [4(%)| TBT | EBT [ (%)
Simply supported beam

3.0453| 3.1416 | 3.0 | 2.8769 | 2.9545 | 2.6 | 2.7202 | 2.5438 | -6.9 | 2.6269 | 2.4783 | -6.0
5.6716| 6.2832 | 9.7 | 5.0824 | 5.4966 | 7.5 | 5.0342 | .3615 | 6.1 | 4.6248 | 49248 | 6.1
7.8395| 9.4248 | 16.8 | 7.2807 | .5199 | 4.5 | 9992 | 7166 | 9.3 | 6.2958 | 6.5851 | 4.4
9.6571|12.5664 | 23.1 | 9.3386 |11.9524 | 21.8 | 9.3165 |11.8327 | 21.2 | 8.9259 |11.1797| 20.1
1.2220]15.7080 | 28.5 | 11.1138 | 15.4740 | 28.1 | 10.8266 | 4.2329 | 23.9 |10.6653 | 13.7340| 22.3

Q1
T = W N =
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Beam parameters: E = 210 GPa; p = 7860 kg/mQ; v=03,x=5/6;L=1,b=0.1;h = 0.2;0.1;0.05 (m)
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5. CONCLUSION

Summarizing results obtained in the present study the conclusions can be made as
follow:

A closed form solution has been conducted for free vibration of Timoshenko beam
with arbitrary number of cracks. This solution is straightforward to derive an explicit
expression for frequency equation and mode shapes of multiple cracked Timoshenko
beams;

Analysis of natural frequencies obtained from the frequency equation shows that
the Timoshenko beam theory is useful for vibration analysis of not only short or thick
cracked beams but also the long or slender ones, while the Euler-Bernoulli beam theory
is applicable only for long and slender beams;

Nevertheless, sensitivities of natural frequencies to cracks computed by the EBT
and TBT are the same for beams of slenderness ratio (L/h) greater than 20 and for the
ratio less than 20 natural frequencies computed by the EBT are more sensitive to cracks
than those computed by TBT;

The obtained closed-form solution can be used for vibration analysis and crack
identification of more complicated structures such as stepped multispan beams or framed
structures with cracks that is a subject of next studies of the authors.
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