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Abstract. We consider a domain made of a linear elastic material which contains an an-
gular point. A small defect, like a cavity or a crack, is located in the neighborhood of the
tip of the wedge. In order to study its influence both on the local and global responses of
the body, we use a matched asymptotic expansion method. After the general construction
of the matched asymptotic expansions for an arbitrary defect, we develop the method in
the particular case where the defect is a small crack. The numerical results obtained from
the method are finally compared with those given by the classical finite element method.
All the analysis is made in an antiplane setting in order to make easier the calculations.
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1. INTRODUCTION

A major issue in fracture mechanics is how to model the initiation of a crack in a
sound material, see [1–4]. If one uses Griffith criterion like in [5,6] or cohesive force mod-
els like in [7,8], the main difficulty is to compute with a good accuracy mechanical quan-
tities like the energy release rate associated with a crack of small length which appears at
the tip of a notch, see [9–11]. The classical finite element method leads to inaccurate re-
sults because of the overlap of two singularities (one due to the tip of the notch, the other
due to the tip of the crack) which cannot be correctly captured, see [12–14]. A specific
method of approximation, like in [15–21], based on asymptotic expansions is preferable
because the singularities are then obtained explicitly. The present paper is devoted to
the presentation of this asymptotic method in the more general case of a defect (and not
only of a crack) located at the tip of a notch in the simplified context of antiplane linear
elasticity. It turns out that many works have been devoted to the study of elliptic prob-
lems in corner domains, see for example [22–24]. But none proposes a comprehensive
method to compute with precision as large as it is needed the mechanical fields and all
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related physical quantities in such a situation. Accordingly, we present here the method
of construction of the matched asymptotic expansions first in the general case and then
to the particular case of a noncohesive crack. The numerical results are finally compared
with those given by the classical finite element method.

2. THE REAL PROBLEM

Here, we are interested to the case where a small geometrical defect of size ` (like a
crack or a void) is located near the corner of a notch, see Fig. 1. The geometry of the notch
is characterized by its angle ω, see Fig. 2. The angle of the notch is a parameter which
can run in the interval (0, 2π). The tip of the notch is taken as the origin of the space and
we will consider two scales of coordinates: the “macroscopic” coordinates x = (x1, x2)
which are used in the outer domain and the “microscopic” coordinates y = x/` = (y1, y2)
which are used in the neighborhood of the tip of the notch where the defect is located,
see Fig. 2. The unit vector orthogonal to the (x1, x2) plane is denoted e3.
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Fig. 1. The domain Ω` for the real problem

The natural reference configuration of the sound two-dimensional body is denoted by Ω0 while the
associated body which contains a defect of size ` is denoted by Ω`. Accordingly one has

Ω` = Ω0\D` (1)

where D` denotes the domain occupied by the defect, the boundary of which is Γ`. D` is contained
in the disk of center (0, 0) and radius `. (In the case of a crack, one has D` = Γ`.) The two edges
of the notch are denoted by Γ+ and Γ−, see Figure 1. When one uses polar coordinates (r, θ), the
pole is the tip of the notch and the origin of the polar angle is the edge Γ−. Accordingly, we have

r = ‖x‖, Γ− = {(r, θ), 0 < r < r∗, θ = 0}, Γ+ = {(r, θ), 0 < r < r∗, θ = ω}. (2)

This body is made of an elastic isotropic material whose shear modulus is µ > 0. It is submitted
to a loading such that the displacement field at equilibrium u be antiplane, i.e.

u(x) = u`(x1, x2)e3

where the superscript ` is used in order to recall that the real displacement depends on the size of
the defect. We assume that the body forces are zero and then u` must be an harmonic function in
order to satisfy the equilibrium equations in the bulk:

∆u` = 0 in Ω`, (3)

∆ representing the laplacian differential operator.

The edges of the notch are free while Γ` is submitted to a density of (antiplane) surface forces.
Accordingly, the boundary conditions on Γ` and Γ± read as

∂u`

∂ν
= 0 on Γ±,

∂u`

∂ν
= `g(y) on Γ`. (4)

Fig. 1. The domain Ω` for the
real problem
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Fig. 2. The domains Ω0 (left) and Ω∞ (right) for, respectively, the outer and the inner problems

3.1. The outer expansion

Far from the tip of the notch, i.e. for r � `, we assume that the real displacement field u` can be
expanded as follows

u`(x) =
∑

i∈N
`iλui(x). (7)

In (7), even if this expansion is valid far enough from r = 0 only, the fields ui must be defined
in the whole outer domain Ω0 which corresponds to the sound body, see Figure 2-left. Inserting
this expansion into the set of equations constituting the real problem, one obtains the following
equations that the ui’s must satisfy:

The first outer problem i = 0




∆u0 = 0 in Ω0

∂u0

∂ν
= 0 on Γ+ ∪ Γ−

∂u0

∂ν
= h(x) on ΓN

u0 = f(x) on ΓD

(8)

The other outer problems i ≥ 1




∆ui = 0 in Ω0

∂ui

∂ν
= 0 on Γ+ ∪ Γ−

∂ui

∂ν
= 0 on ΓN

ui = 0 on ΓD

(9)

Moreover, the behavior of ui in the neighborhood of r = 0 is singular and the singularity will be
given by the matching conditions.

3.2. The inner expansion

Near the tip of the notch, i.e. for r � 1, we assume that the real displacement field u` can be
expanded as follows

u`(x) = ln(`)
∑

i∈N
`iλwi(y) +

∑

i∈N
`iλvi(y). (10)

Fig. 2. The domains Ω0 (left) and Ω∞ (right) for, respectively,
the outer and the inner problems

The natural reference configuration of the sound two-dimensional body is denoted
by Ω0 while the associated body which contains a defect of size ` is denoted by Ω`.
Accordingly one has

Ω` = Ω0\D` , (1)
where D` denotes the domain occupied by the defect, the boundary of which is Γ`. D` is
contained in the disk of center (0, 0) and radius `. (In the case of a crack, one hasD` = Γ`).
The two edges of the notch are denoted by Γ+ and Γ−, see Fig. 1. When one uses polar
coordinates (r, θ), the pole is the tip of the notch and the origin of the polar angle is the
edge Γ−. Accordingly, we have

r = ‖x‖ , Γ− =
{

(r, θ) , 0 < r < r∗, θ = 0
}

, Γ+ =
{

(r, θ) , 0 < r < r∗, θ = ω
}

. (2)

This body is made of an elastic isotropic material whose shear modulus is µ > 0. It is
submitted to a loading such that the displacement field at equilibrium u be antiplane, i.e.

u (x) = u` (x1, x2) e3 ,
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where the superscript ` is used in order to recall that the real displacement depends on
the size of the defect. We assume that the body forces are zero and then u` must be a
harmonic function in order to satisfy the equilibrium equations in the bulk

∆u` = 0 in Ω` , (3)

∆ representing the Laplacian differential operator.
The edges of the notch are free while Γ` is submitted to a density of (antiplane) sur-

face forces. Accordingly, the boundary conditions on Γ` and Γ± read as

∂u`

∂ν
= 0 on Γ±,

∂u`

∂ν
= `g (y) on Γ` . (4)

In (4), ν denotes the unit outer normal vector to the domain and we assume that
the density of (antiplane) surface forces depends on the microscopic variable y and has a
magnitude of the order of `.

The remaining part of the boundary of Ω` is divided into two parts: ΓD where
the displacement is prescribed and ΓN where (antiplane) surface forces are prescribed.
Specifically, we have

u` = f (x) on ΓD,
∂u`

∂ν
= h (x) on ΓN . (5)

The following Proposition is a characterization of functions which are harmonic in
an angular sector and whose normal derivatives vanish on the edges of the sector. It is of
constant use thereafter.

Proposition 1. Let r1 and r2 be such that 0 ≤ r1 < r2 ≤ +∞ and let Dr2
r1 be the angular sector

Dr2
r1
= {(r, θ) : r ∈ (r1, r2) , θ ∈ (0, ω)} .

Then any function u which is harmonic in Dr2
r1 and which satisfies the Neumann condition

∂u/∂θ = 0 on the sides θ = 0 and θ = ω can be read as

u (r, θ) = a0 ln (r) + d0 + ∑
n∈N∗

(
anr−nλ + dnrnλ

)
cos (nλθ), (6)

with λ = π/ω, whereas the an’s and the dn’s constitute two sequences of real numbers which are
characteristic of u.

Proof. Since the normal derivative vanishes at θ = 0 and θ = ω, u(r, θ) can be read as
the following Fourier series [25, 26]

u (r, θ) = ∑
n∈N

fn (r) cos (nλθ).

In order that u be harmonic, the functions fn must satisfy r2 f ′′n + r f ′n − n2λ2 fn = 0,
for each n. One easily deduces that f0(r) = a0 ln(r) + d0 and fn(r) = anr−nλ + dnrnλ for
n ≥ 1. �
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3. THE MATCHING ASYMPTOTIC METHOD

When the length ` of the defect is small by comparison with the characteristic length
of the body (here, this characteristic length is equal to 1), then it is necessary to make an
asymptotic analysis of the problem rather than to try to obtain directly an approximation
by classical finite element methods. In the case of a crack for instance, because of the
overlap of two singularities (one at the tip of the notch and the other at the tip of the
crack), it is difficult and even impossible to obtain accurate results without using a rele-
vant asymptotic method. Here we will use the matched asymptotic expansion technique
which consists in making two asymptotic expansions of the field u` in terms of the small
parameter `. The first one, called the inner expansion, is valid in the neighborhood of
the tip of the notch, while the other, called the outer expansion, is valid far from this tip.
These two expansions are matched in an intermediate zone.

3.1. The outer expansion
Far from the tip of the notch, i.e. for r � `, we assume that the real displacement

field u` can be expanded as follows

u` (x) = ∑
i∈N

`iλui (x). (7)

In (7), even if this expansion is valid far enough from r = 0 only, the fields ui must be
defined in the whole outer domain Ω0 which corresponds to the sound body, see Fig. 2-
left. Inserting this expansion into the set of equations constituting the real problem, one
obtains the following equations that the ui’s must satisfy:

The first outer problem i = 0




∆u0 = 0 in Ω0
∂u0

∂ν
= 0 on Γ+ ∪ Γ−

∂u0

∂ν
= h (x) on ΓN

u0 = f (x) on ΓD

(8)

The other outer problems i ≥ 1




∆ui = 0 in Ω0
∂ui

∂ν
= 0 on Γ+ ∪ Γ−

∂ui

∂ν
= 0 on ΓN

ui = 0 on ΓD

(9)

Moreover, the behavior of ui in the neighborhood of r = 0 is singular and the singu-
larity will be given by the matching conditions.

3.2. The inner expansion
Near the tip of the notch, i.e. for r � 1, we assume that the real displacement field

u` can be expanded as follows

u` (x) = ln (`) ∑
i∈N

`iλwi (y) + ∑
i∈N

`iλvi (y). (10)

In (10), even if this expansion is valid only in the neighborhood of r = 0, the fields vi

and wi must be defined in the infinite inner domain Ω∞. The domain Ω∞ is the infinite
angular sector D∞

0 of the (y1, y2) plane from which one removes the rescaled defect of
size 1, see Fig. 2-right

Ω∞ = D∞
0 \D1. (11)
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The boundary of D1 is Γ1. (In the case of a crack, one has D1 = Γ1.) Inserting
this expansion into the set of equations constituting the real problem, one obtains the
following equations that the vi’s must satisfy:

The first inner problem i = 0




∆v0 = 0 in Ω∞

∂v0

∂θ
= 0 on θ = 0 and θ = ω

∂v0

∂ν
= g (y) on Γ1

(12)

The other inner problems i ≥ 1




∆vi = 0 in Ω∞

∂vi

∂θ
= 0 on θ = 0 and θ = ω

∂vi

∂ν
= 0 on Γ1

(13)

The wi’s must satisfy, for every i ≥ 0 the same equations as the vi’s for i ≥ 1. To
complete the set of equations one must add the behavior at infinity of the vi’s and the
wi’s. This behavior will be given by the matching conditions with the outer problems.

3.3. Matching conditions

Since all the displacement fields ui are harmonic in the sectorDr2
0 and satisfy a homo-

geneous Neumann boundary condition on the edges of this angular sector, we can use
Proposition 1. Accordingly, in Dr2

0 the field ui can read as

ui (x) = ai
0 ln (r) + di

0 + ∑
n∈N∗

(
ai

nr−nλ + di
nrnλ

)
cos (nλθ) . (14)

In the same way for the inner expansion, since all the displacement fields vi and
wi are harmonic in the sector D∞

1 of the y plane and satisfy a homogeneous Neumann
boundary condition on the edges of this angular sector, we can use Proposition 1 with
the macroscopic coordinates x and r replaced by the microscopic coordinates y and ρ =
‖y‖ = r/`. Accordingly, in D∞

1 the fields vi and wi can read as

vi (y) = ci
0 ln (ρ) + bi

0 + ∑
n∈N∗

(
ci

nρ−nλ + bi
nρnλ

)
cos (nλθ) , (15)

wi (y) = ei
0 ln (ρ) + f i

0 + ∑
n∈N∗

(
ei

nρ−nλ + f i
nρnλ

)
cos (nλθ) . (16)

The outer expansion and the inner expansion are both valid in any intermediate zone
Dr2

r1 such that ` � r1 < r2 � 1. Inserting (14) into the outer expansion (7) with r = `ρ
leads to

u` (x) = ∑
i∈N

ln (`) `iλai
0 + ∑

i∈N

`iλ

(
ai

0 ln (ρ) + di
0 + ∑

n∈N∗

(
ai+n

n ρ−nλ + di−n
n ρnλ

)
cos (nλθ)

)
,

(17)
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with the convention that di−n
n = 0 when n > i. Inserting (15) and (16) into the inner

expansion (10) leads to

u` (x) = ∑
i∈N

ln (`) `iλ

(
ei

0 ln (ρ) + f i
0 + ∑

n∈N∗

(
ei

nρ−nλ + f i
nρnλ

)
cos (nλθ)

)

+ ∑
i∈N

`iλ

(
ci

0 ln (ρ) + bi
0 + ∑

n∈N∗

(
ci

nρ−nλ + bi
nρnλ

)
cos (nλθ)

)
.

(18)

Both expansions (17) and (18) are valid provided that 1� ρ� 1/`. By identification
one gets the following properties for the coefficients of the inner and outer expansions,
see Tab. 1.

Table 1. The relations between the coefficients of the inner and outer expansions given
by the matching conditions

ei
n = 0 i ≥ 0, n ≥ 0

f i
0 = ai

0 i ≥ 0

f i
n = 0 i ≥ 0, n ≥ 0

ai
n = 0 n > i ≥ 0

ci
n = ai+n

n i ≥ 0, n ≥ 0

bi
n = 0 n > i ≥ 0

di
n = bi+n

n i ≥ 0, n ≥ 0

Remark 1. One deduces from Tab. 1 that the fields wi are constant in the whole inner domain:

wi (y) = ai
0, ∀y ∈ Ω∞, ∀i ≥ 0. (19)

Therefore, these fields will be determined once the constants ai
0 will be known.

3.4. The singular behavior of the ui’s and the vi’s

We deduce from the matching conditions the behavior of ui in the neighborhood of
r = 0 and the behavior of vi in the neighborhood of ρ = ∞. In particular, one obtains the
form of their singularities. Let us first precise what one means by singularity.

Definition 1. A field u defined in Ω0 is said regular in Ω0 if u ∈ H1 (Ω0), i.e. u ∈ L2 (Ω0) and
∇u ∈ L2(Ω0)

2 [25]. It is said singular otherwise.
A field u defined in the unbounded sector Ω∞ is said regular in Ω∞ if ∇u ∈ L2(Ω∞)2 and

limρ→∞u (ρ, θ) = 0. It is said singular otherwise.

By virtue of the analysis of the previous subsection, the field u0 can be read in a
neighborhood of the tip of the notch as

u0 (x) = a0
0 ln (r) + ∑

n∈N

bn
nrnλ cos (nλθ) . (20)
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Since ln(r) is singular in Ω0 whereas rnλ cos (nλθ) is regular (for n ≥ 0) in Ω0 in
the sense of Definition 1, a0

0 ln(r) can be considered as the singular part of the field u0.
Accordingly, one can decompose u0 into its singular and its regular part as follows

u0 (x) = u0
S (x) + ū0 (x) , (21)

u0
S (x) = a0

0 ln (r) , ū0 (x) ∈ H1 (Ω0) . (22)
In the same way, for i ≥ 1, the field ui can be read in a neighborhood of the tip of the

notch as

ui (x) = ai
0 ln (r) +

i

∑
n=1

ai
nr−nλ cos (nλθ) + ∑

n∈N

bi+n
n rnλ cos (nλθ) . (23)

Since r−nλ cos (nλθ) is singular (for n ≥ 0) in the sense of Definition 1, one can
decompose ui into its singular and its regular part as follows

ui (x) = ui
S (x) + ūi (x) , (24)

ui
S (x) = ai

0 ln (r) +
i

∑
n=1

ai
nr−nλ cos (nλθ), ūi ∈ H1 (Ω0) . (25)

For the fields vi of the inner expansion, one has to study their behavior at infinity.
By virtue of the analysis of the previous subsection, the field vi for i ≥ 0 can be read in a
neighborhood of ρ = ∞ as

vi (y) = ai
0 ln (ρ) +

i

∑
n=0

bi
nρnλ cos (nλθ) + ∑

n∈N∗

ai+n
n ρ−nλ cos (nλθ) . (26)

The field ln(ρ) as well as the fields ρnλ cos (nλθ), for n ≥ 0, are singular in Ω∞ in
the sense of Definition 1 (even the constant field 1 corresponding to n = 0 is singular).

Since the fields ρ−nλ cos (nλθ) are regular when n ≥ 1, ai
0 ln (ρ) +

i
∑

n=0
bi

nρnλ cos (nλθ) can

be considered as the singular part of the field vi. Accordingly, one can decompose vi into
its singular and its regular part as follows

vi (y) = vi
S (y) + v̄i (y) , (27)

vi
S (y) = ai

0 ln (ρ) +
i

∑
n=0

bi
nρnλ cos (nλθ), ∇v̄i ∈ L2 (Ω∞) , lim

|y|→∞
v̄i (y) = 0. (28)

Remark 2. This analysis of the singularities shows that the singular parts of the fields ui and vi

will be known once the coefficients ai
n and bi

n will be determined for 0 ≤ n ≤ i.
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3.5. The problems giving the regular parts ūi and v̄i

We are now in position to set the inner and outer problems giving the fields vi and
ui. Since, by construction, the singular parts of these fields are harmonic and satisfy the
homogeneous Neumann boundary conditions on the edges of the notch, their regular
parts must verify the following boundary value problems.

The first outer problem, i = 0
Find ū0 regular in Ω0 such that





∆ū0 = 0 in Ω0
∂ū0

∂ν
= 0 on Γ+ ∪ Γ−

∂ū0

∂ν
= h− ∂u0

S
∂ν

on ΓN

ū0 = f − u0
S on ΓD

(29)

The other outer problems, i ≥ 1
Find ūi regular in Ω0 such that




∆ūi = 0 in Ω0
∂ūi

∂ν
= 0 on Γ+ ∪ Γ−

∂ūi

∂ν
= −∂ui

S
∂ν

on ΓN

ūi = −ui
S on ΓD

(30)

The first inner problem, i = 0
Find v̄0 regular in Ω∞ such that





∆v̄0 = 0 in Ω∞

∂v̄0

∂ν
= 0 on Γ+ ∪ Γ−

∂v̄0

∂ν
= g− ∂v0

S
∂ν

on Γ1

(31)

The other inner problems, i ≥ 1
Find v̄i regular in Ω∞ such that





∆v̄i = 0 in Ω∞

∂v̄i

∂ν
= 0 on Γ+ ∪ Γ−

∂v̄i

∂ν
= −∂vi

S
∂ν

on Γ1

(32)

Let us study first the outer problems. We have the following proposition which is a
direct consequence of classical results for the Laplace equation [25]:

Proposition 2. Let i ≥ 0. For a given singular part ui
S, i.e. if the coefficients ai

n are known for
all n such that 0 ≤ n ≤ i, then there exists a unique solution ūi of (30) (or of (29) when i = 0).
Consequently, the coefficients bi+n

n are then determined for all n ≥ 0.

Let us consider now the inner problems. We obtain the following proposition

Proposition 3. Let i ≥ 0. For given bi
n with 0 ≤ n ≤ i, there exists a regular solution vi for the

i-th inner problem if and only is the coefficient ai
0 is such that

a0
0 = − 1

ω

∫

Γ1

g (s) ds, ai
0 = 0 for i ≥ 1. (33)

Moreover, if this condition is satisfied, then the solution is unique and therefore the coefficients
ai+n

n are determined for all n ≥ 0.

Proof. The inner problems are pure Neumann problems in which no Dirichlet boundary
conditions are imposed to the vi’s. Consequently, they admit a solution (if and) only
if the Neumann data satisfy a global compatibility condition. Let us re-establish that
condition. Let ΩR be the part of Ω∞ included in the ball of radius R > 1, i.e. ΩR =
Ω∞ ∩ {y : |y| < R}. Let us consider first the case i = 0. Integrating the equation ∆v0 = 0
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over ΩR and using the boundary conditions leads to

0 =
∫

∂ΩR

∂v0

∂ν
ds =

∫ ω

0

∂v0

∂ρ
(R, θ) Rdθ +

∫

Γ1

g (s)ds. (34)

Using (26), one gets R
∂v0

∂ρ
(R, θ) = a0

0 +∑n∈N∗ nλ
(
−c0

nR−nλ + b0
nRnλ

)
cos (nλθ). Since

∫ ω
0 cos(nλθ)dθ = 0 for all n ≥ 1, after inserting in (34) one obtains the desired condition

for a0
0. One proceeds exactly in the same manner for i ≥ 1 and one obtains the desired

condition because the integral over Γ1 vanishes.
If the compatibility condition (33) is satisfied, then one proves the existence of a

regular solution for v̄i by standard arguments, [25]. Note however that, since∇v̄i belongs
to L2(Ω∞), v̄i tends to a constant at infinity and this constant is fixed to 0 by the additional
regularity condition. As far as the uniqueness is concerned, the solution of this pure
Neumann problem is unique up to a constant and the constant is fixed by the condition
that v̄i vanishes at infinity.

Once vi is determined, one obtains the coefficients ai+n
n by virtue of Proposition 1

and (26). �

Remark 3. If the forces applied to the boundary of the defect are equilibrated, i.e. if
∫

Γ1
g(s)ds =

0, then all the coefficients ai
0 vanish and hence the terms in ln(`) disappear in the inner expansion.

There is no more logarithmic singularities in the ui’s and the vi’s.

3.6. The construction of the outer and inner expansions
Equipped with the previous results, we are in position to explain how one can deter-

mine the different terms of the two expansions. Let us explain first how one obtains the
first terms.

(1) One obtains a0
0 by (33) and hence one knows u0

S.
(2) Knowing u0

S, one determines ū0 and hence u0 by solving (29), see Proposition 2.
(3) Knowing u0, one calculates bn

n for n ≥ 0 as a regular part of u0, see the next
subsection for the practical method. Hence, one knows v0

S.
(4) Knowing v0

S, one determines v̄0 and hence v0 by solving (31), see Proposition 3.
(5) Knowing v0, one calculates an

n for n ≥ 1 as a regular part of v0, see the next
subsection for the practical method. Hence, since a1

0 = 0, one knows u1
S.

Then one proceeds by induction. Let i ≥ 1. Assuming that the following properties hold
true,

H1 uj and vj have been determined for 0 ≤ j ≤ i− 1
H2 bj

n is known for 0 ≤ n ≤ j ≤ i− 1
H3 aj+n

n and bj+n
n are known for 0 ≤ j ≤ i− 1 and n ≥ 0

H4 aj
n is known for 0 ≤ n ≤ j ≤ i

let us prove that they remain true for i + 1.
C1 Knowing ai

n for 0 ≤ n ≤ i, one knows ui
S. Knowing ui

S, one determines ūi and
hence ui by solving (30), see Proposition 2.
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C2 Knowing ui, one calculates bj+n
n for n ≥ 0 as a regular part of ui, see the next

subsection for the practical method. Hence, one knows vi
S.

C3 Since bi
0 is known and since bi

n = bj+n
n with j = i− n, one knows bi

n for 0 ≤ n ≤ i.
C4 Knowing vi

S, one determines v̄i and hence vi by solving (32), see Proposition 3.
C5 One knows that ai

0 = 0. Knowing vi, one calculates ai+n
n for n ≥ 1 as a regular

part of vi, see the next subsection for the practical method.
C6 Since ai+1

0 = 0 and since ai+1
n = aj+n

n with j = i + 1 − n, one knows ai+1
n for

0 ≤ n ≤ i + 1.
This iterative method is summarized in Tab. 2.

Table 2. Summary of the inductive method to obtain the coefficients ai
n and bi

n: in each cell
is indicated the problem which must be solved

ai
n/bi

n i = 0 i = 1 i = 2 i = 3 i = 4

n = 0 (33)/Outer 0 0/Outer 1 0/Outer 2 0/Outer 3 0/Outer 4
n = 1 0 Inner 0/Outer 0 Inner 1/Outer 1 Inner 2/Outer 2 Inner 3/Outer 3
n = 2 0 0 Inner 0/Outer 0 Inner 1/Outer 1 Inner 2/Outer 2
n = 3 0 0 0 Inner 0/Outer 0 Inner 1/Outer 1
n = 4 0 0 0 0 Inner 0/Outer 0

3.7. The practical method for determining the coefficients ai
n and bi

n for 0 ≤ n ≤ i
Throughout this section, Cr denotes the arc of circle of radius r starting on Γ− and

ending on Γ+

Cr = {(r, θ) : 0 ≤ θ ≤ ω} .
The coefficients ai

n and bi
n can be obtained by path integrals (which are path indepen-

dent like in [27]) as it is proved in the following proposition.

Proposition 4. Let i ≥ 0 and let us assume that the iths inner and outer problems are solved and
thus that v̄i and ūi are known. Then

(1) For n ≥ 1, ai+n
n is given by the following path integral over Cρ which is independent of

ρ provided that ρ > 1

ai+n
n =

2ρnλ

ω

∫ ω

0
v̄i (ρ, θ) cos (nλθ) dθ. (35)

(2) For n ≥ 0, bi+n
n is given by the following path integral over Cr which is independent of

r provided that 0 < r < r∗

bi
0 =

1
ω

∫ ω

0
ūi (r, θ) dθ, bi+n

n =
2r−nλ

ω

∫ ω

0
ūi (r, θ) cos (nλθ) dθ, for n ≥ 1. (36)

Proof. The proofs are identical for the two families of coefficients and then one gives only
the proof for bi+n

n . By virtue of (23), the regular part ūi of ui is given by

ūi (r, θ) = ∑
p∈N

bi+p
p rpλ cos (pλθ) dθ,
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for 0 < r < r∗. Since
∫ ω

0 cos (pλθ) dθ is equal to ω if p = 0 and is equal to 0 otherwise,
one obtains the expression for bi

0. For n ≥ 1, since
∫ ω

0 cos (pλθ) cos (nλθ) dθ is equal to
ω/2 if p = n and is equal to 0 otherwise, one obtains the expression for bi+n

n . �

4. VERIFICATION IN THE CASE OF A CIRCULAR CAVITY

This section is devoted to an illustration of the asymptotic method in the case where
the exact solution is known. That will allow us to prove the pertinency and the accu-
racy of the method. Specifically, we consider a Laplace problem posed in a domain
which has the shape of an angular sector of angle ω ∈ (0, 2π) limited by two arcs of
circle, see Fig. 3. The radius of the outer circle ΓD is equal to 1 whereas the radius
of the inner circle Γ` is equal to `. Accordingly, the defect is a small circular cavity
of radius ` centered at the origin. The notch edges Γ−` = {x = re1, r ∈ (`, 1)}, Γ+

` =
{x = r cos ωe1 + r sin ωe2, r ∈ (`, 1)} and the inner circle Γ` = {x = ` cos θe1 + ` sin θe2 ,
θ ∈ (`, ω)} are free, what leads to homogeneous Neumann boundary conditions

∂u`

∂ν
= 0 on Γ+

` ∪ Γ−` ∪ Γ`. (37)

On the outer circle ΓD = {x = cos θe1 + sin θe2, θ ∈ (0, ω)} is applied a Dirichlet
boundary condition

u` (x) = cos λθ on ΓD, λ =
π

ω
. (38)

Let us note that this Dirichlet boundary condition on ΓD is compatible with the Neu-
mann boundary condition on Γ±` . Accordingly, the solution is obtained in a closed form
which can read as

u` (x) =
(

`2λ

1 + `2λ
r−λ +

1
1 + `2λ

rλ

)
cos λθ. (39)
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Fig. 3. The domain Ω` in the case of a circular cavity

Therefore, assuming that ` is small, the solution can be expanded for a given r > 0 as follows:

u`(x) = rλ cosλθ +

( ∞∑

i=1

`2iλ

)
(r−λ − rλ) cosλθ (40)

Introducing the rescaled coordinates y = x/`, the polar coordinate r becomes ρ := ‖y‖ = r/`
whereas θ remains unchanged. Inserting into (39), we get

u`(x) =
`λ

1 + `2λ
(ρ−λ + ρλ) cosλθ (41)

Consequently, for a given ρ > 1, the solution can be expanded as follows:

u`(x) =

( ∞∑

i=1

(−1)i−1`(2i−1)λ

)
(ρ−λ + ρλ) cos(λθ) (42)

In other words, direct calculations from the known exact solution lead to the inner and outer
expansions shown in Table 3.

rank Outer expansion Inner expansion

i = 0 u0(x) = rλ cosλθ v0(y) = 0

i ≥ 1 u2i−1(x) = 0 v2i−1(y) = (−1)i−1(ρ−λ + ρλ) cosλθ

i ≥ 1 u2i(x) = (r−λ − rλ) cosλθ v2i(y) = 0

Table 3. The outer expansions and inner expansions in the case of a circular cavity

Let us check that we recover the same expansions by following the procedure described in Section 3.
We are in the situation where ΓN is empty, g = 0, f = cosλθ and

Ω0 = {x = r cos θe1 + r sin θe2, 0 < r < 1, 0 < θ < ω}.

Fig. 3. The domain Ω` in the case of a circular cavity
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Therefore, assuming that ` is small, the solution can be expanded for a given r > 0
as follows

u` (x) = rλ cos λθ +

(
∞

∑
i=1

`2iλ

)(
r−λ − rλ

)
cos λθ. (40)

Introducing the rescaled coordinates y = x/`, the polar coordinate r becomes ρ :=
‖y‖ = r/` whereas θ remains unchanged. Inserting into (39), we get

u` (x) =
`λ

1 + `2λ

(
ρ−λ + ρλ

)
cos λθ. (41)

Consequently, for a given ρ > 1, the solution can be expanded as follows

u` (x) =

(
∞

∑
i=1

(−1)i−1`(2i−1)λ

)(
ρ−λ + ρλ

)
cos (λθ) . (42)

In other words, direct calculations from the known exact solution lead to the inner
and outer expansions shown in Tab. 3.

Table 3. The outer expansions and inner expansions in the case of a circular cavity

rank Outer expansion Inner expansion

i = 0 u0 (x) = rλ cos λθ v0 (y) = 0
i ≥ 1 u2i−1 (x) = 0 v2i−1 (y) = (−1)i−1 (ρ−λ + ρλ

)
cos λθ

i ≥ 1 u2i (x) =
(
r−λ − rλ

)
cos λθ v2i (y) = 0

Let us check that we recover the same expansions by following the procedure de-
scribed in Section 3. We are in the situation where ΓN is empty, g = 0, f = cos λθ and

Ω0 = {x = r cos θe1 + r sin θe2, 0 < r < 1, 0 < θ < ω} .

(1) Since g = 0, (33) gives a0
0 = 0 and hence u0

S = 0.
(2) Solving (29) gives ū0 = rλ cos λθ.
(3) Using (36) gives b1

1 = 1 and bn
n = 0 for n 6= 1. Since b0

0 = 0, one gets v0
S = 0.

(4) Solving (31) gives v̄0 = 0.
(5) Using (35) gives an

n = 0 for any n. Since a1
1 = 0, one gets u1

S = 0.
(6) Solving (30) for i = 1 gives ū1 = 0.
(7) Using (36) gives bn+1

n = 0 for any n. Since b1
1 = 1, one gets v1

S = ρλ cos λθ.
(8) Solving (32) for i = 1 gives v̄1 = ρ−λ cos λθ.
(9) Using (35) gives a2

1 = 1 and an+1
n = 0 for n 6= 1. Therefore u2

S = r−λ cos λθ.
(10) Solving (30) for i = 2 gives ū2 = −rλ cos λθ.
(11) Using (36) gives b3

1 = −1 and bn+2
n = 0 for n 6= 1. Therefore v2

S = 0.
(12) Solving (32) for i = 2 gives v̄2 = 0.
Then, by induction, we recover the same expansions as those shown in Tab. 3. The

end of the verification is left to the reader.
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5. CASE OF A CRACK

In this section, the method is applied to the case where the defect is a (non cohesive)
crack. Specifically, let Ω be the rectangle (−H, L)× (−H,+H). We remove from Ω the
following sector Nε where 0 < ε < 1

Nε = {x = (x1, x2 : −H < x1 ≤ 0, |x2| ≤ ε |x1|)} .

So we obtain the notch-shaped body Ω0 = Ω\Nε. (Note that the limit case ε = 0
would correspond to a body with a preexisting crack of length H. We exclude a such case
here so that the exponent of the singularity at the tip of the wedge be λ = π/ω > 1/2.)
Finally we remove from Ω0 the segment line Γ` = (0, `)× {0} and obtains the cracked
body Ω`, see Fig. 4. (Note that here the axes are chosen so that the crack be on the x1-axis.
We do not use polar coordinates.)

12 Dang Thi Bach Tuyet

(1) Since g = 0, (33) gives a0
0 = 0 and hence u0

S = 0.

(2) Solving (29) gives ū0 = rλ cosλθ.
(3) Using (36) gives b11 = 1 and bnn = 0 for n 6= 1. Since b00 = 0, one gets v0

S = 0.
(4) Solving (31) gives v̄0 = 0.
(5) Using (35) gives ann = 0 for any n. Since a1

1 = 0, one gets u1
S = 0.

(6) Solving (30) for i = 1 gives ū1 = 0.
(7) Using (36) gives bn+1

n = 0 for any n. Since b11 = 1, one gets v1
S = ρλ cosλθ.

(8) Solving (32) for i = 1 gives v̄1 = ρ−λ cosλθ.
(9) Using (35) gives a2

1 = 1 and an+1
n = 0 for n 6= 1. Therefore u2

S = r−λ cosλθ.

(10) Solving (30) for i = 2 gives ū2 = −rλ cosλθ.
(11) Using (36) gives b31 = −1 and bn+2

n = 0 for n 6= 1. Therefore v2
S = 0.

(12) Solving (32) for i = 2 gives v̄2 = 0.

Then, by induction, we recover the same expansions as those shown in Table 3. The end of the
verification is left to the reader.

5. Case of a crack

In this section, the method is applied to the case where the defect is a (non cohesive) crack.
Specifically, let Ω be the rectangle (−H,L) × (−H,+H). We remove from Ω the following sector
Nε where 0 < ε < 1:

Nε = {x = (x1, x2 : −H < x1 ≤ 0, |x2| ≤ ε|x1|)}.

So we obtain the notch-shaped body Ω0 = Ω\Nε. (Note that the limit case ε = 0 would correspond
to a body with a preexisting crack of length H. We exclude a such case here so that the exponent of
the singularity at the tip of the wedge be λ = π/ω > 1/2.) Finally we remove from Ω0 the segment
line Γ` = (0, `)×{0} and obtains the cracked body Ω`, see Figure 4. (Note that here the axes are
chosen so that the crack be on the x1-axis. We do not use polar coordinates.)

Fig. 4. The cracked notch-shaped body Ω`Fig. 4. The cracked notch-shaped body Ω`

The boundary ΓD where the displacement is prescribed corresponds to the sides D±ε
and ΓL. Specifically, the boundary conditions read as

u` (x) =





+1 on D+
ε = {−H} × {εH, H}

−1 on D−ε = {−H} × {−H,−εH}
0 on ΓL = {L} × {−H, H}

whereas the remaining parts of the boundary (including the lips of the crack) are free.
(In the case of a cohesive crack, the lips of the crack would be not free but submitted to
cohesive forces depending in general of the jump of the displacement. Here we ignore
such cohesive forces.) Accordingly, we have

∂u`

∂x2
= 0 on Γ`. (43)

We are in the case where g = 0 on Γ`. Therefore, by virtue of Proposition 3, all the
coefficients ai

0 vanish and there is no logarithmic singularities. Accordingly, the solution
can be expanded as follows

Outer expansion u` (x) = u0 (x) + `λu1 (x) + `2λu2 (x) + `3λu3 (x) + . . . (44)

Inner expansion u` (y) = v0 (y) + `λv1 (y) + `2λv2 (y) + `3λv3 (y) + . . . (45)
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with
λ =

π

ω
, ω = 2π − arctan (2ε) .

Remark 4. By symmetry of the geometry and the loading, the real field u` is an odd function of
x2, i.e.

u` (x1,−x2) = −u` (x1, x2) .

Therefore, all the fields ui, ūi, vi, v̄i admit the same symmetry. One deduces from Proposition 4
that all the coefficients bi+2n

2n and ai+2n
2n vanish. We can also prove (but the proof is too long to be

reproduced here) that all the odd terms of the outer expansion and all the even terms of the inner
expansions vanish, i.e. u2i+1 = 0 and v2i = 0 for all i ∈N.

The main goal of this section is to obtain an accurate value of the elastic energy
stored in the cracked body, say P `, for small values of ` by using the matched asymptotic
method because it is difficult to evaluate the accuracy of its values obtained by a classical
finite element method. By definition, the elastic energy is given by

P ` =
1
2

∫

Ω`

µ∇u` · ∇u`dx.

By virtue of Clapeyron’s formula, the elastic energy at equilibrium is equal to one
half of the work done by the external loads which are involved on D±ε to prescribe the
displacement. Therefore, using the symmetry of u`, the elastic energy can read as the
following integral over D+

ε

P ` = −
∫ H

εH
µ

∂u`

∂x1
(−H, x2) dx2,

which involves only the displacement field far from the tip of the notch. Accordingly,
one can expand P ` by using the outer expansion of u`. That leads to

P ` = ∑
i∈N

P2i`2iλ with P2i = −
∫ H

εH
µ

∂u2i

∂x1
(−H, x2) dx2. (46)

An important quantity for the study of the propagation of the crack is the energy
release rate G` which is the opposite of the derivative of the elastic energy with respect to
the length of the crack, see [5, 9–11, 28–30]

G` = dP `

d`
.

Its expansion can be immediately deduce from that of the energy

G` = − ∑
i∈N∗

2iλP2i`2iλ−1. (47)

To obtain the ith term of the expansion of P ` and G`, one must determine both the
singular part ui

S and the regular part ūi of ui. The singular part involves the coefficients
ai

n for 1 ≤ n ≤ i which are obtained as the regular parts of the vj’s for j ≤ i, see Sub-
section 3.6. Therefore, one must also solve the inner problems and hence determine the
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coefficients bi
n for 0 ≤ n ≤ i. In practice, these coefficients are obtained by using Propo-

sition 4 after the inner and the outer problems have been solved with a finite element
method. The advantage is that those problems do not contain a small defect and the
accuracy is guaranteed.

In Tabs. 4 and 5 are given the computed values of the first coefficients of the inner
and outer expansions (with H = 1, L = 5, µ = 1). These coefficients are necessary to
compute the first terms of the expansion of the energy and of the energy release rate.

Table 4. The computed values of the coefficients bn
n and bn+2

n for 0 ≤ n ≤ 4
and of the leading terms P0 and P2 of the expansion of the potential energy

for several values of the angle of the notch

ε b0
0 b1

1 b2
2 b3

3 b4
4 P0 b2

0 b3
1 b4

2 b5
3 b6

4 P2

0 0 -0.7834 0 0.6940 0 0.6940 0 0.2384 0 0.1058 0 -0.4836
0.1 0 -0.7482 0 0.6606 0 0.6606 0 0.2091 0 0.0992 0 -0.4413
0.2 0 -0.7089 0 0.6238 0 0.6238 0 0.1777 0 0.0905 0 -0.3957
0.3 0 -0.6657 0 0.5847 0 0.5847 0 0.1451 0 0.0800 0 -0.3486
0.4 0 -0.6187 0 0.5420 0 0.5420 0 0.1125 0 0.0683 0 -0.3005

Table 5. The computed values of the coefficients an+1
n for 1 ≤ n ≤ 5

ε a2
1 a3

2 a4
3 a5

4 a6
5

0 -0.3930 0 0.0987 0 -0.0494
0.1 -0.3756 0 0.0943 0 -0.0472
0.2 -0.3559 0 0.0893 0 -0.0446
0.3 -0.3342 0 0.0838 0 -0.0418
0.4 -0.3106 0 0.0778 0 -0.0389

The graphs of ` 7→ P ` and ` 7→ G` obtained from these expansions are plotted on
Fig. 5. They are compared with the values obtained directly by the finite element code
Comsol, see [11]. It turns out that Comsol is not able to give accurate results for small
values of ` (here when ` < 0.01) whereas the matching asymptotic expansion is valid in
this range of values (and even the smaller `, the more accurate the asymptotic method).
The two methods give the same results in the intermediate range of values (0.01, 0.1) of `.
Note however that the asymptotic method diverges from the finite element method for
large values of `. It is due to the fact that one has only computed the first terms of the
expansion and one should compute more terms to obtain accurate results. Fig. 6 sketches
the graph of G` corresponding to the expansion of matching asymptotic up to different
orders, specifically, up to the second, the fourth and the sixth term. Moreover, comparing
with the result which is generated by FEM, see [11], one can see that the accuracy of the
result increases with the number of terms included in the expansion.
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Fig. 5. Comparisons of the graphs of P` and G` near ` = 0 obtained by Matching Asymptotic Expansion or
by the finite element code COMSOL for five values of the angle of the notch

The graphs of ` 7→ P` and ` 7→ G` obtained from these expansions are plotted on Figure 5. They are
compared with the values obtained directly by the finite element code Comsol, see [24]. It turns out
that Comsol is not able to give accurate results for small values of ` (here when ` < 0.01) whereas
the matching asymptotic expansion is valid in this range of values (and even the smaller `, the
more accurate the asymptotic method). The two methods give the same results in the intermediate
range of values (0.01, 0.1) of `. Note however that the asymptotic method diverges from the finite
element method for large values of `. It is due to the fact that one has only computed the first
terms of the expansion and one should compute more terms to obtain accurate results. The Figure
6 sketches the graph of G` corresponding to the expansion of matching asymptotic up to different
orders, specifically, up to the second, the fourth and the sixth term. Moreover, comparing with the
result which is generated by FEM, see [24], one can see that the accuracy of the result increases
with the number of terms included in the expansion.

Fig. 5. Comparisons of the graphs of P ` and G` near ` = 0 obtained by Matching Asymptotic
Expansion or by the finite element code COMSOL for five values of the angle of the notch
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Fig. 6. The graphs of G`, when ε = 0.1, obtained by using either the Finite Element Method or the Asymp-
totic Method expanded up to the sixth order.

6. Conclusion

We have presented here a general method based on matched asymptotic expansions which can be
applied to determine the mechanical fields and all related mechanical quantities in the case of a
defect located at the tip of a notch. Applying this method to the case of a non cohesive crack, it
turns out that it is sufficient to solve few inner and outer problems to obtain with a very good
accuracy the dependence of the energy and the energy release rate on the length of the crack.
Moreover, this approximation can be used for very small values of the length of the crack and
hence for determining the onset of the cracking whereas a classical finite element method gives rise
to inaccurate results.
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6. CONCLUSION

We have presented here a general method based on matched asymptotic expansions
which can be applied to determine the mechanical fields and all related mechanical quan-
tities in the case of a defect located at the tip of a notch. Applying this method to the case
of a noncohesive crack, it turns out that it is sufficient to solve few inner and outer prob-
lems to obtain with very good accuracy the dependence of the energy and the energy
release rate on the length of the crack. Moreover, this approximation can be used for
very small values of the length of the crack and hence for determining the onset of the
cracking whereas a classical finite element method gives rise to inaccurate results.
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mathématique de l’intégrale de rice en théorie de la rupture fragile. Mathematical Methods
in the Applied Sciences, 3, (1), (1981), pp. 70–87. doi:10.1002/mma.1670030106.

[11] J.-J. Marigo. Initiation of cracks in Griffiths theory: an argument of continuity in fa-
vor of global minimization. Journal of Nonlinear Science, 20, (6), (2010), pp. 831–868.
doi:10.1007/s00332-010-9074-x.

[12] P. Grisvard. Elliptic problems in nonsmooth domains. Pitman Publishing Inc., Marshfield, Mas-
sachusettes, (1985).

[13] P. Grisvard. Problemes aux limites dans les polygones; mode demploi. Bulletin de la Direction
des Etudes et Recherches Series C, 1, (1986), pp. 21–59.

[14] P. Grisvard. Singularities in boundary value problems. Masson, (1992).

http://dx.doi.org/10.1007/s10659-007-9107-3
http://dx.doi.org/10.1007/s00205-007-0080-6
http://dx.doi.org/10.1007/s00205-007-0080-6
http://dx.doi.org/10.1016/s0022-5096(98)00034-9
http://dx.doi.org/10.1007/s00161-007-0051-z
http://dx.doi.org/10.3934/dcdss.2016012
http://dx.doi.org/10.1007/s00332-010-9061-2
http://dx.doi.org/10.1007/s00332-010-9061-2
http://dx.doi.org/10.1002/mma.1670030106
http://dx.doi.org/10.1007/s00332-010-9074-x


32 Dang Thi Bach Tuyet, Laurence Halpern, Jean-Jacques Marigo

[15] M. David, J.-J. Marigo, and C. Pideri. Homogenized interface model describing inho-
mogeneities located on a surface. Journal of Elasticity, 109, (2), (2012), pp. 153–187.
doi:10.1007/s10659-012-9374-5.

[16] G. Geymonat, S. Hendili, F. Krasucki, and M. Vidrascu. Matched asymptotic expansion
method for a homogenized interface model. Mathematical Models and Methods in Applied Sci-
ences, 24, (3), (2014), pp. 573–597. doi:10.1142/s0218202513500607.

[17] G. Geymonat, F. Krasucki, S. Hendili, and M. Vidrascu. The matched asymptotic ex-
pansion for the computation of the effective behavior of an elastic structure with a thin
layer of holes. International Journal for Multiscale Computational Engineering, 9, (5), (2011).
doi:10.1615/intjmultcompeng.2011002619.

[18] J. K. Kevorkian and J. D. Cole. Multiple scale and singular perturbation methods, Vol. 114.
Springer, (1996).

[19] D. Leguillon. Calcul du taux de restitution de l’énergie au voisinage d’une singularité.
Comptes rendus de l’Académie des sciences. Série 2, 309, (10), (1989), pp. 945–950.

[20] J.-J. Marigo and C. Pideri. The effective behavior of elastic bodies containing microcracks or
microholes localized on a surface. International Journal of Damage Mechanics, 20, (8), (2011),
pp. 1151–1177. doi:10.1177/1056789511406914.

[21] M. Vidrascu, G. Geymonat, S. Hendili, and F. Krasucki. Matched asymptotic expansion and
domain decomposition for an elastic structure. In 21st International Conference on Domain De-
composition Methods. Rennes, France, (2012).
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