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Abstract. Dynamic modeling and analysis of flexible manipulators play an essential role
in optimizing mechanical design parameters and control law of real robot systems. In
this paper, a nonlinear dynamic model of a manipulator is formulated based on the Finite
Element Method. To analyze the dynamic behavior effectively, a numerical simulation
scheme is proposed by taking full advantages of MATLAB and SIMULINK toolboxes. In
this manner, the effect of varying payload and link length ratio of the manipulator to its
elastic displacement is dynamically taken into account. The simulation results show that
the payload and length link ratio have significant influences on the elastic displacements
of the system. In particular, a proper spectrum of the link length ratio, in which the flexural
displacement of the end point of the manipulator is smallest, is demonstrated. To this end,
the proposed methodology could be used further to select optimal geometric parameters
for the links of new robot designs.

Keywords: Flexible link, nonlinear dynamic equations, varied payload, varied length of links.

1. INTRODUCTION

The optimization of structure and energy is essential in robot arm design. This
issue mostly relates to mechanical structure, required workspace, control accuracy, and
loading capability of the robot. Robots designed with larger workspace, slimmer and
lighter structure, as well as higher payload capability are always expected by design-
ers. For such robot designs, the elastic displacement of links (flexible links) could not
be neglected as usual. The elastic displacements are the main reason causing errors in
positioning of the end-effector of the robot. Its performance relates closely to the rigidity
of the structure, power consumption, reachable workspace, and manipulation speed. In
particular, the loading capability and the geometric parameters of links should be anal-
ysed with respect to the elastic property of the system. Therefore, modeling and analysis
of the flexible manipulator play an important role for the robot design and control.
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Years ago, a number of researches focused on the flexible manipulator. Based on
the dynamic model, Wang [1, 2] proposed a technique to investigate the maximum load
carrying capacity of a robot manipulator given a dynamic robot trajectory. Korayem [3]
studied on the dynamic load carrying capacity of a two-link flexible manipulator using
finite element method and Pontryagin’s Minimum principle. Wang and Russell [4] pre-
sented numerical results for payload varying with the corresponding optimum shape
design. Gee and Lee [5] discussed the modeling and nonlinear dynamic equations of
a one-flexible link manipulator based on finite element method in Lagrange approach
with varied payload. The effects of payload on the dynamic characteristic of a planar
two-link flexible manipulator with the Assumed Modes Method (AMM) are studied and
discussed in [6]. Reddy [7] presented the nonlinear modeling of a one-link flexible ma-
nipulator based on AMM and LS-DYNA. The results of both are compared. The nu-
merical simulation shows that the LS-DYNA model gives the smooth hub-angle profile.
Alam [8] proposed modeling of motion of single-link flexible which has been formulated
as minimization problems with 8-dimensional searching space by using FSR-GA to esti-
mate parameters of model so as to minimize the prediction error between system output,
measured data and model output at each time step. Jafari [9] presented the nonlinear
dynamic analysis of a single-link flexible manipulators by using FEM. Khali Ibrahim [10]
described the simulation and experimental a single-link flexible manipulator with vary-
ing payloads. Narayana [11] presented the modeling and control PID of single-link flex-
ible manipulator using linear techniques. Pole placement and LQR are proposed in con-
troller design. Peza-Solı́s [12] used finite differences method and AMM to modeling a
single-link flexible manipulator. Sliding modes control law is used to track trajectory
with continuous time variables. Undergoing large deformation, Korayem [13] has built
the general formula to finding the maximum allowable dynamic load of geometrically
nonlinear flexible link manipulators. The dynamic model is based on small deflection
theory. Ata [14] studied the effect of different sets of initial and boundary conditions
on the joints torques. The AMM is used for computing elastic displacement. Here and
now, there are remaining issues which need be studied. The nonlinear dynamic modeling
with fully components in equations of motion has not been mentioned yet. The effects of
varying payload and link length ratios at the same time are not considered yet, too.

This paper presents an investigation on the nonlinear dynamic modeling of a two-
link flexible manipulator. The dynamic equations of the system are derived and pre-
sented in Lagrangian formulation. In particular, the hub inertia, mass of rotors, payload,
structural damping, Coriolis and centrifugal forces are taken into the modeling to ob-
tain a full dynamic model. To analyze the dynamic behavior effectively, a numerical
simulation scheme is proposed by taking full advantages of MATLAB and SIMULINK
toolboxes. In this manner, the effect of varying payload and link length ratio of the ma-
nipulator to its elastic displacement is dynamically taken into account. The simulation
results show that the payload and length link ratio have a significant influence on the
elastic displacements of the system. In particular, a proper spectrum of the link length
ratio, in which the flexural displacement of the end point of the manipulator is smallest,
is demonstrated. To this end, the proposed methodology could be used further to select
optimal geometric parameters for the links of new robot designs.



Dynamic analysis of two-link flexible manipulator considering the link length ratio and the payload 305

2. DYNAMIC MODELLING

2.1. Finite Element model
In Finite Element Method (FEM) approach, the flexible link is considered as an as-

semblage of a finite number of small elements. The elements are assumed interconnected
at certain points, known as nodes. For each finite element, the scalar kinetic and poten-
tial energy functions are formulated as functions of the generalized coordinate. In this
work, we concern a two-link flexible manipulator which motions on horizontal plane as
depicted in Fig. 1.

Fig. 1. Schematic diagram of a two-link flexible manipulator

The manipulator in Fig. 1 includes two flexible links. The rotation hubs at joint 1
and joint 2 are q1 and q2, respectively. The links are assumed as Euler–Bernoulli’s beams.
Each link can be divided into elements along the length of link and any element has 2
nodes. Each node has 2 variables which are the flexural and the slope displacement.
Symbols u2j−1, u2j, u2j+1 and u2j+2 are flexural and slope at the first and the second nodes
of element j. Similarly, v2k−1, v2k, v2k+1 and v2k+2 are flexural and slope at the first and the
second nodes of k element. The coordinate system XOY is the fixed frame. Coordinate
system XiOiYi is attached to link i. Symbols τ1 and τ2 are the applied torques at the joint
1 and 2. The vector r1 is from O1 to the end point of link 1 in the X1O1Y1. The vector
r2 is from O2 to the end point of link 2 in the X2O2Y2. The vectors r01 and r02 are from
O to end point of link 1 and link 2 in the XOY. Ih2, mdc2 and Jdc2 are the motor inertial
moment, mass and inertial moment of rotor 2. Symbols mP and JP are the mass and
inertial moment of payload on the end point of link 2. The material of links is assumed
homogeneity. Link 1 is divided n1 elements. The length of any element is lj. Link 2 has n2
elements and length of any element is lk. Total elastic displacement w1j(xj, t) of element
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j with (xj, yj) coordinate on X1O1Y1 can be given by [5]

w1j(xj, t) = N1j(xj)Q1j(t). (1)

The generalized vector of shape function N1j(xj) is defined as

N1j(xj) =
[

xj φ1(xj) φ2(xj) φ3(xj) φ4(xj)
]

. (2)

Mode shape function φi(xj) can be presented in [3]. The generalized elastic displacement
Q1j(t) is given as

Q1j(t) =
[

q1(t) u2j−1 u2j u2j+1 u2j+2
]T . (3)

The coordinate r1j of element j on X1O1Y1 is computed as

r1j =

[
(j − 1)lj + xj

w1j(xj, t)

]
, (4)

where vector r01j = T1
0r1j is coordinate of element j on XOY and T1

0 =

[
cos q1 − sin q1
sin q1 cos q1

]
is the transformation matrix from X1O1Y1 to XOY system. Elastic kinetic energy of ele-
ment j is determined as

T1j =
1
2

∫ lj

0
ρ1A1

[
∂r01j

∂t

]2

dxj =
1
2

Q̇T
1jM1jQ̇1j , (5)

where ρ1 and A1 are mass density and cross-sectional area of link 1. Each element of
inertial mass matrix M1j can be computed as

M1j(m, e) =
∫ lj

0
ρ1A1

[
∂r01j

∂Q1jm

]T [
∂r01j

∂Q1je

]
dxj ; m, e = 1, 2, . . . , 5. (6)

The gravity effects can be ignored as the manipulator movement is confined to the
horizontal plane. Defining E1 and I1 are Young’s modulus and inertial moment of link 1,
the elastic potential energy of element j is shown as P1j with the stiffness matrix K1j and
presented as [5]

P1j =
1
2

∫ lj

0
E1 I1

[
∂2w1j(xj, t)

∂x2
j

]2

dxj =
1
2

QT
1j(t)K1jQ1j(t), (7)

where u1 and u2 elastic displacement at the first point, u2n+1 and u2n+2 are elastic dis-
placement at the end point of link 1, and vector Q1(t) =

[
q1 u1 u2 . . . u2n1+1 u2n1+2

]T

represents the generalized coordinate of link 1. The elastic kinetic energy and the poten-
tial energy of link 1 are yielded as

Tdh1 =
n1

∑
j=1

T1j =
1
2

Q̇T
1 (t)Mdh1Q̇1(t), (8)

and

P1 =
n1

∑
j=1

P1j =
1
2

QT
1 (t)K1Q1(t). (9)
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In above Eq. (8) and Eq. (9), the inertial mass matrix Mdh1 and the stiffness matrix
K1 are constituted from matrices of elements follow FEM theory, respectively.

Similarly, the total elastic displacement w2k(xk, t), the generalized shape function
N2k(xk) and the elastic displacement Q2k(t) of element k with (xk, yk) coordinate in X2O2Y2
can be written as

w2k(xk, t) = N2k(xk)Q2k(t), (10)

N2k(xk) =
[

xk xk xk L1 + xk φ1(xk) φ2(xk) φ3(xk) φ4(xk)
]

, (11)

Q2k(t) =
[

q1(t) u2n1+1 u2n1+2 q2(t) v2k−1 v2k v2k+1 v2k+2
]T. (12)

Respectively, the coordinate r2k of element k on X2O2Y2 and r02k on XOY are computed as

r2k =

[
(k − 1)lk + xk

w2k(xk, t)

]
, (13)

r02k = T1
0
[
r1 + T2

1r2k
]

, (14)

where the transformation matrix T2
1 is given by [3]

T2
1 =

[
cos(q2 + u2n1+2) − sin(q2 + u2n1+2)
sin(q2 + u2n1+2) cos(q2 + u2n1+2)

]
. (15)

The elastic kinetic energy of element k is determined as

T2k =
1
2

∫ lk

0
ρ2A2

[
∂r02k

∂t

]2

dxk =
1
2

Q̇T
2kM2kQ̇2k. (16)

Noted that each element of inertial mass matrix M2k can be computed similarly (6).
With the stiffness matrix K2k computed as in [15], the elastic potential energy of element
k is written as

P2k =
1
2

∫ lk

0
E2 I2

[
∂2w2k(xk, t)

∂x2
k

]2

dxk =
1
2

QT
2k(t)K2kQ2k(t). (17)

Similarly in link 1, v1, v2, v2n2+1 and v2n2+2 are flexural and slope displacement at
the first point and the end point of link 2, the generalized coordinate Q2(t) of link 2 is
defined as

Q2(t) =
[

q1 u2n1+1 u2n1+2 q2 v1 v2 . . . v2n2+1 v2n2+2
]T . (18)

The elastic kinetic energy and potential energy of link 2 are given by

Tdh2 =
n2

∑
k=1

T2k =
1
2

Q̇T
2 (t)Mdh2Q̇2(t), (19)

P2 =
n2

∑
k=1

P2k =
1
2

QT
2 (t)K2Q2(t). (20)

The inertial mass matrix Mdh2 and the stiffness matrix K2 are calculated according
to FEM theory.
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2.2. Dynamic equations
As noted above, the methodology is based upon FEM and Lagrange–Euler method.

The main advantage of using a Lagrange formulation is that it is simple and systematic,
which is of great importance when a computer is used. Fundamentally, the method relies
on the Lagrange equations with Lagrange function L = T − P are given by

d
dt

(
∂L
∂Q̇

)
− ∂L

∂Q
= F (t) . (21)

Vector Q represents the generalized coordinate overall system and is given as

Q =
[

q1 u1 u2 . . . u2n1+1 u2n1+2 q2 v1 v2 . . . v2n2+1 v2n2+2
]T . (22)

F(t) is the external generalized forces acting on specific generalized coordinate Q.
The overall system kinetic energy T is computed as

T = Tdh1 + Tdc1 + Tmd + Tdh2 + Tdc2 + TmP =
1
2

Q̇T(t)MQ̇(t), (23)

where Tdc1 and Tdc2 are kinetic energy of motor 1 and motor 2. They are given as

Tdc1 =
1
2

Ih1q̇2
1(t) =

1
2

Q̇T
1 (t)Mdc1Q̇1(t), (24)

Tdc2 =
1
2

Ih2 (q̇1 + q̇2 + u̇2n1+2)
2 (t) =

1
2

Q̇T
2 (t)Mdc2Q̇2(t). (25)

The kinetic energy of mass of motor 2 at the end of link 1 and kinetic energy of
payload at the end of link 2 are Tmd and TmP, respectively. They are computed as

Tmd =
1
2

mdc2

[
∂r01

∂t
(L1, t)

]2

+
1
2

Jdc2 (q̇1 + u̇2n1+2)
2 =

1
2

Q̇T
1 (t)MmdQ̇1(t), (26)

TmP =
1
2

mp

[
∂r02

∂t
(L2, t)

]2

+
1
2

Jp (q̇1 + u̇2n1+2 + q̇2 + v̇2n2+2)
2 =

1
2

Q̇T
2 (t)MmPQ̇2 (t) . (27)

The matrices Mdc1, Mdc2, Mmd and MmP are easy determined following vectors of
variables Q1(t) and Q2(t). The mass matrix M is sum of M1 and M2 which are mass
matrix of link 1 and link 2, respectively. Each element in M is determined from FEM
theory. Elements (i, j) of M are computed following the algorithm in [16]. They are
given as

M1 = Mdh1 + Mdc1 + Mmd, (28)
M2 = Mdh2 + Mdc2 + MmP, (29)

M [i, j] = M1 [i1, j1] + M2 [i2, j2] ; (i1, j1 = 1, 2, . . . , 2n1 + 3; i2, j2 = 1, 2, . . . , 2n2 + 6) . (30)
The matrix K is determined from K1 and K2 similarly M. The overall system po-

tential energy is computed as

P = P1 + P2 =
1
2

QT(t)KQ(t). (31)

When kinetic and potential energies are known, it is possible to express (21) as shown

M (Q) Q̈ + C
(
Q, Q̇

)
Q̇ + DQ̇ + KQ = F (t) , (32)
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where structural damping D and Coriolis force C are calculated as

C
(
Q, Q̇

)
Q̇ = Ṁ (Q) Q̇ − 1

2
∂

∂Q

(
Q̇TM(Q)Q̇

)
, (33)

D = αM + βK, (34)
where α and β are the damping ratios of the system which are determined by experi-
ment. The nonlinear dynamic equations (32) are determined from (30), (33) and (34).
The dynamic behaviors of system depend on Q, structural geometry and payload. They
are described through variation M, C and D matrices because each element of these is a
function of them and is given as

M[i, j] = f (Q, L1, L2, mP) ;

D[i, j] = f (Q, L1, L2, mP) ; i, j = 1, . . . , n

C[i, j] = f (Q, L1, L2, mP) ;
(35)

n = 4n1 + 4n2 + 2. (36)
There are many researchers focused on dynamic behaviors under variation of pay-

load [4–6]. However, the effects of structural geometry on dynamic behavior of manip-
ulator have not been clearly considered. In fact, the variation of factorial geometry of
links has a huge influence on values elastic displacements which will be considered in
the next part.

3. SIMULATION RESULTS AND DISCUSSION

The joints of links are constrained to have zero elastic displacements of q1(t) and
q2(t) with respect to the fixed axis OX. Thus variables u1, u2, v1 and v2 can be zero. By
enforcing these boundary conditions and FEM theory, the generalized coordinate Q(t)
becomes

Q(t) =
[

q1 u3 u4 . . . u2n1+1 u2n1+2 q2 v3 v4 . . . v2n2+1 v2n2+2
]T . (37)

The respective vector of torque by actuators is given by

F(t) =
[

τ1 0 0 . . . 0 τ2 0 0 . . . 0
]T . (38)

The dynamic nonlinear equations of two-link flexible manipulator can be derived
as followed (21). In this work, the input torque applied signals are τ1 at the hub of link 1
and τ2 at the hub of link 2 and are shown in Fig. 2. The results of equations (21) are output
signals which are angular of joints q1(t), q2(t) and elastic displacements at the end of link
1 and link 2. Most of initial values are constant, except that the values of payload and
length of links are changed. The initial values of model are given by: b1 = b2 = 0.02 (m);
h1 = h2 = 0.003 (m); A1 = b1h1 (m2); A2 = b2h2 (m2); E1 = E2 = 7, 11.1010 (kg/m2);
ρ1 = ρ2 = 2710 (kg/m3); I1 = I2 = 4, 5.10−11 (m4); Ih1 = Ih2 = 5, 86.10−4 (kg.m2);
mdc2 = 0, 155 (kg); Jdc2 = mdc2L2

1/3 (kg.m2); α = 0.76; β = 5, 6.10−5;
Case 1: L1 = 1 (m), L2 = 0.5 (m), mP = 0 (kg); 0.05 (kg), 0.1 (kg), 0.15 (kg);
Case 2: L1 = L2 = 1 (m), mP = 0 (kg); 0.05 (kg); 0.01 (kg); 0.15 (kg);
Case 3: L1 = 0.5 (m), L2 = 1 (m), mP = 0 (kg); 0.05 (kg); 0.1 (kg); 0.15 (kg).
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Fig. 2. The torques input of link 1 and link 2

To determine elastic displacements under variation of payload and length of links
on a two flexible links manipulator, a computer program was written within MATLAB-
SIMULINK environment which is shown in Fig. 3.
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         Figure 4. The flexural and slope displacement at the end-effector in Case 1 (L L m
1 2
1; 0.5( ) ) 

Fig. 3. System block diagram in SIMULINK

Time domain results of the effects of varied payload for the case 1 are shown in
Fig. 4.The length of link 1 is longer than the length of link 2 (L1 = 1; L2 = 0.5 (m)). The
lengths ratio is 2 : 1. The maximum value of flexural displacement is 0.082 (m) and slope
displacement is 0.25 (rad), respectively, mP = 0 (g), respectively. They are decreasing
when the payload increases. In case 2, the lengths of link 1 and link 2 are equal. The
values of flexural and slope displacement are shown in Fig. 5. The maximum flexural
value is 0.5 (m) and slope value is 0.8 (rad). Elastic displacements are decreased with
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Fig. 4. The flexural and slope displacement at the end-effector in Case 1 (L1 = 1; L2 = 0.5 (m))

increasing payloads. They tended to increase than case 1 while the ratio between length
of link 1 and link 2 is decreased. Finally, Fig. 6 shows the values of elastic displacements
at the end point of link 2 in case 3 (L1 = 0.5 (m); L2 = 1 (m)). The ratio (L1 : L2) is (1 : 2).
The values of elastic displacements are the biggest in all of three cases. But they are still
decreased with increasing payloads. The results can be summarized in Tab. 1.

Fig. 5. The elastic displacements at the end-effector in Case 2 (L1 = 1; L2 = 1 (m))

By comparing the results presented in Tab. 1, it is noted that when the length ratio
between link 1 and link 2 is decreasing the elastic displacement values increase while the
payload is constant. Furthermore, these values are not much different. When the length
ratio is constant the elastic displacements decrease and the system vibrates in long time
with increasing payloads in all of three cases. Besides, the values of elastic displacements
at the end point of link 2 are smallest while the length of link 1 is longer than length of
link 2.
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Fig. 6. The elastic displacements at the end-effector in Case 3 (L1 = 0.5; L2 = 1 (m))

Table 1. Effects of variation of payloads and length of links for elastic displacements values
at the end point of link 2

Payloads
Maximum flexural displacement (m) Maximum slope displacement (rad)

(g)
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

(L1 < L2) (L1 = L2) (L1 > L2) (L1 < L2) (L1 = L2) (L1 > L2)

0 0.082 0.5 0.6 0.25 0.8 0.8
50 0.055 0.21 0.3 0.17 0.35 0.55
100 0.04 0.16 0.18 0.125 0.18 0.38
150 0.05 0.1 0.2 0.16 0.12 0.28

4. CONCLUSION

A nonlinear dynamic model of a two-link flexible manipulator incorporating struc-
tural damping, hub inertia, Coriolis and centrifugal forces and payload has been pre-
sented. The dynamic equations are built based on finite element method in Lagrange-
Euler approach. The determination of the elastic displacement plays an essential role
in the consideration of the system dynamic behavior under the variation of the payload
and the link length ratio. These results are very helpful and important in the mechanical
design of the links and in the development of effective control algorithms for the flexible
manipulators with varying payload.
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