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Abstract. The isogeometric symmetric Galerkin boundary element method is applied for
the analysis of crack problems in two-dimensional magneto-electro-elastic domains. In
this method, the field variables of the governing integral equations as well as the geome-
try of the problems are approximated using non-uniform rational B-splines (NURBS) basis
functions. The key advantage of this method is that the isogeometric analysis and bound-
ary element method deal only with the boundary of the domain. To verify the accuracy
of the proposed method, numerical examples for crack problems in infinite and finite do-
mains are examined. It is observed that the computed generalized stress intensity factors
obtained by the proposed method agree well with the exact solutions and other references.
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1. INTRODUCTION

Isogeometric analysis (IGA) [1] has recently received much consideration of re-
searchers because of its capability to save significantly pre-processing time for the analy-
sis of structures [2]. This comes from the fact that, in IGA, the basis functions employed
to describe the shape of the structure are also used to approximate the field variables of
the problem. Although IGA has been applied successfully for the finite element method
(FEM), there still exist difficulties due to the difference between the non-volumetric ge-
ometry representation used in IGA and the volumetric discretization used in FEM. To
overcome this difficulty, the combinations of IGA with other methods such as meshfree
methods (e.g. [3,4]) or the extended finite element method (e.g. [5–7]) have been consid-
ered. For the same purpose, the combination of IGA and the boundary element method
(BEM) seems to be a very beneficial option since BEM, in the absence of body force, just
deals with the boundary of the domain. Studies of IGA-BEM can be found in [8–14].
Particularly, the combination of IGA and BEM is ideal for the analysis of crack prob-
lems due to the fact that, in BEM, there is no need to discretize the region in front of the
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crack tip which is usually a challenge for FEM. A particular effective BEM formulation
for the analysis of crack problems is the weakly-singular symmetric Galerkin boundary
element method (SGBEM), e.g. [15–17]. In this method, the singular integrals (where the
numerical evaluation of the integrals is one of challenging tasks in BEM) are regularized
so that they could be evaluated accurately using a standard integration scheme. Owning
these advantages, the combination of IGA and SGBEM should be a powerful tool to anal-
yse crack problems. However, as other BEM methods, the disadvantages of the current
method are the complex integral equations that require advanced techniques to evaluate
accurately, and that the dense coefficient matrix requires more time (relatively compared
to FEM) to solve the system of discretized equations.

For magneto-electro-elastic materials, due to the complicated essence of the gov-
erning equations of field quantities, analytical solutions for crack problems are just lim-
ited to very simple geometries and loadings, e.g. [18–21]. Therefore, computational tech-
niques are very necessary and practical for crack problems of complicated geometries,
e.g. [22–26]. This paper is the extension of the IGA-SGBEM which is developed in [27]
for isotropic materials to magneto-electro-elastic materials.

2. FORMULATION

This section presents an introduction on the equations that govern a crack problem
in two-dimensional domains of magneto-electro-elastic materials. We start with the equi-
librium and constitutive equations for a general boundary value problem. The governing
equations for a crack problem are then introduced.

2.1. Governing equations in magneto-electro-elastic media
With respect to a Cartesian coordinate system where {x1, x2} are the in-plane coor-

dinates and {x3} is the out-of-plane coordinate, the setting for this work is two-dimensional
in the sense that all field quantities are assumed to be independent of x3, and as such we
describe the domain occupied by the body simply in terms of a region Ω belong to the
x1-x2 plane. For every point x ∈ Ω, and with the assumption of no body force, electric
charge and electric current, the field quantities are taken to be governed by equilibrium
equations 1

∂

∂xα
σαj(x) = 0 (1a)

∂

∂xα
Dα(x) = 0 (1b)

∂

∂xα
Bα(x) = 0 (1c)

1Here and what follows, Greek indices range from 1 to 2, lower case Latin indices range from 1 to 3;
repeated indices imply summation over their range.
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and constitutive relations

σαj(x) = Cαjkβ
∂

∂xβ
uk(x) + eβαj

∂

∂xβ
φ(x) + hβαj

∂

∂xβ
ψ(x) (2a)

Dα(x) = eαkβ
∂

∂xβ
uk(x)− καβ

∂

∂xβ
φ(x)− βαβ

∂

∂xβ
ψ(x) (2b)

Bα(x) = hαkβ
∂

∂xβ
uk(x)− βαβ

∂

∂xβ
φ(x)− γαβ

∂

∂xβ
ψ(x). (2c)

In Eqs. (1) and (2), the notations used for the field variables are as follows. The me-
chanical stress and displacement are σαj and uk respectively, the electric induction and
potential are Dα and φ respectively, and the magnetic induction and potential are Bα and
ψ respectively. The material is characterized by the elastic modulus Cαjkβ, piezoelectric
and piezomagnetic constants eβαj and hβαj respectively, dielectric constant καβ, electro
magnetic constant βαβ and magnetic permeability γαβ. It is well-known that Eqs. (1) and
(2) can be written in contracted forms in terms of ‘generalized’ variables as 2

∂

∂xα
σαJ(x) = 0 (3)

σαJ(x) = EαJKβ
∂

∂xβ
uK(x). (4)

In the above equations, the generalized stress σαJ , generalized displacement uK and gen-
eralized moduli EαJKβ are defined as

σαJ =

 σαj , J = 1, 2, 3
Dα , J = 4
Bα , J = 5

(5)

uK =

 uk , K = 1, 2, 3
φ , K = 4
ψ , K = 5

(6)

EαJKβ =



Cαjkβ , J, K = 1, 2, 3
eβαj , J = 1, 2, 3 , K = 4
eαkβ , J = 4 , K = 1, 2, 3
hβαj , J = 1, 2, 3 , K = 5
hαkβ , J = 5 , K = 1, 2, 3
−καβ , J, K = 4
−βαβ , J = 4 , K = 5
−ββα , J = 5 , K = 4
−γαβ , J, K = 5.

(7)

2Here and what follows, upper case Latin indices range from 1 to 5 to be capable of representing
generalized quantities.
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Based on the definition of generalized stress above, a generalized traction vector is then
defined as tJ = σαJnα in which n is a unit vector normal to a particular surface (repre-
sented by a planar curve owing to the two-dimensional setting) passing through a par-
ticular point x ∈ Ω. For the present work, it is required that the generalized moduli are
symmetric such that EαJKβ = EβKJα and that, for any nonzero vector z ∈ R2, the matrix
(z, z)JK ≡ zαEαJKβzβ is invertible. From now on, we omit the word ‘generalized’ when
referring to different field quantities and material constants for the sake of simplicity.

2.2. Governing integral equations for crack problems

Γ+
c

Γ−c

Γ+
c

Γ−c

Γu,uo

Γt, toΓt ∪ Γu = Γo

Γt ∩ Γu = Ø

Fig. 1. Schematic of a finite domain
containing embedded and surface-

breaking cracks

We now consider the case that the domain Ω
contains embedded and/or surface-breaking cracks
as shown in Fig. 1. On the ordinary boundary Γo =
Γt ∪ Γu, traction to is prescribed on the portion Γt and
displacement uo is prescribed on the portion Γu. The
crack is described by ‘upper’ and ‘lower’ faces Γ+

c
and Γ−c , respectively, which are geometrically coinci-
dent such that their unit normals (taken to direct ‘out-
ward’ to the material) satisfy n+ = −n−. On the crack
faces, traction is prescribed and this traction is self-
equilibrated such that t+ = −t−, where t+ and t− re-
fer to the traction applied on Γ+

c and Γ−c respectively.
Due to the geometric coincidence of the crack faces, it
is sufficient to represent the crack faces by just a single
face, i.e. Γc ≡ Γ+

c . The entire boundary of the domain
is denoted as Γ, i.e. Γ = Γo ∪ Γc. For this setting, a pair
of weakly singular weak-form integral equations for
the displacement and traction is given as [28]

1
2

∫
Γo

uP(y) t̃P(y) ds(y) =
∫

Γo

t̃P(y)
∫

Γo

UP
J (ξ − y)tJ(ξ) ds(ξ) ds(y)

+
∫

Γo

t̃P(y)
∫

Γ
GP

J (ξ − y)DvJ(ξ) ds(ξ) ds(y)

−
∫

Γo

t̃P(y)
∫

Γ
nα(ξ)HP

αJ(ξ − y)vJ(ξ) ds(ξ) ds(y), (8)

−
∫

Γ
c(y)tK(y)ṽK(y)ds(y) =

∫
Γ

DṽK(y)
∫

Γ
CK

J (ξ − y)DvJ(ξ)ds(ξ)ds(y)

+
∫

Γ
DṽK(y)

∫
Γo

G J
K(ξ − y)tJ(ξ)ds(ξ)ds(y)

+
∫

Γ
ṽK(y)nα(y)

∫
Γo

H J
αK(ξ − y)tJ(ξ)ds(ξ)ds(y), (9)

in which D ≡ ∂(·)/∂s is the differential operator with respect to the arc length, and
vJ is either the displacement or the relative crack-face displacement, ∆uJ ≡ u+

J − u−J ,
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according to

vJ(ξ) =

{
uJ(ξ) , ξ ∈ Γo
∆uJ(ξ) , ξ ∈ Γc.

(10)

In the above equations, t̃P and ũK are test functions, and ṽK is defined as

ṽK(y) =

{
ũK(y) , y ∈ Γo
∆ũK(y) , y ∈ Γc

(11)

The coefficient c(y) is defined as c(y) = 1/2 for y ∈ Γo and c(y) = 1 for y ∈ Γc. With the
notation of r as the distance between the source point x and the field point ξ, i.e. r is the
magnitude of the vector r ≡ ξ − x, the kernels in Eqs. (8) and (9) are defined as [28]

HP
αJ(ξ − x) = −δJP

∂

∂ξα

(
ln r
2π

)
= −δJP

2π

(ξα − xα)

r2 , (12)

UP
J (ξ − x) = KPα

Jα (ξ − x), (13)

GP
J (ξ − x) = εαβEαJKγKPβ

Kγ(ξ − x), (14)

CK
J (ξ − x) = AJγM

KβP KPβ
Mγ(ξ − x), (15)

in which εαβ denotes the 2D alternating symbol (i.e. ε12 = −ε21 = 1, ε11 = ε22 = 0) and
AJγM

KβP is defined as

AJγM
KβP = EνJMγEνKPβ −

1
5

EνJKνEβPMγ , (16)

where K Iα
Jβ is given as

K Iα
Jβ(ξ − x) = − 1

4π2

∮
‖z‖=1

zαzβ (z, z)−1
I J ln |z · r|ds. (17)

In Eq. (17), the contour integral is to be evaluated along a unit circle ‖z‖ = 1 in the x1-x2
plane. It is noted that the kernels in Eqs. (13)-(15) are weakly singular of order ln r while
the kernel in Eq. (12) is regular (see proof in [28]). The integral equations (8) and (9) are
used to form a symmetric system of integral equations. Indeed, Eq. (8) is applied first on
Γu by taking t̃ = 0 on Γt. Next, Eq. (9) is applied on Γt by taking ṽ = 0 on Γu ∪ Γc. Finally,
Eq. (9) is applied on Γc by taking ṽ = 0 on Γu ∪ Γt. The result is a system of three integral
equations which are symmetric to be solved for the displacement u and the traction t on
Γt and Γu respectively, and for the relative difference of crack-face displacement ∆u on
Γc. More details regarding the symmetry of the system of those integral equations can be
found in [17].

3. ISOGEOMETRIC SGBEM

The system of integral equations presented in the previous section is solved ap-
proximately using the concept of isogeometric analysis [1]. Using the method of Galerkin
approximation, the unknowns (i.e. the displacement u, traction t and relative difference
of crack-face displacement ∆u) are approximated using NURBS basis functions. For the
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crack, a special crack-tip element developed in [17] is employed to accurately model the
asymptotic field of the crack-tip displacement. Details about the use of crack-tip element
can be found in [17] and [27].

3.1. B-Spline and NURBS

Given a knot vector Ξ =
{

ζ0, ζ1, ζ2, . . . , ζi, . . . , ζn+p
}

which is a set of non-decreasing
real numbers ζi’s, where n is the number of basis functions and p is the polynomial order,
the ith B-spline basis function of degree p is defined recursively as

Ni,0(ζ) =

{
1, if ζi ≤ ζ < ζi+1

0, otherwise
(18a)

Ni,p(ζ) =
ζ − ζi

ζi+p − ζi
Ni,p−1(ζ) +

ζi+p+1 − ζ

ζi+p+1 − ζi+1
Ni+1,p−1(ζ), for p ≥ 1. (18b)

With a set of B-Spline basis function
{

Ni,p
}n

i=1 and a set of control points {P}n
i=1 where

P ∈ Rds (ds = 2 for the present study), a B-Spline curve is then formed as

C(ζ) =
n

∑
i=1

PiNi,p(ζ). (19)

Based on the background of B-Splines, a NURBS basis function is defined as

Ri,p(ζ) =
Ni,p(ζ)wi

W(ζ)
=

Ni,p(ζ)wi

∑n
j=1 Nj,p(ζ)wj

, (20)

where {wi}n
i=1 are the weights of the control points. Finally, a NURBS curve is defined as

C(ζ) =
n

∑
i=1

PiRi,p(ζ), (21)

where Pi’s are the control points.

3.2. NURBS discretization
The NURBS basis functions (20) are employed to approximate the trial and test

functions in the governing integral equations as

u = ΦTD, ũ = ΦTD̃ on Γt (22a)

t = ΦTT , t̃ = ΦT T̃ on Γu (22b)

∆u = ΦT∆D, ∆ũ = ΦT∆D̃ on Γc, (22c)

where ΦT denotes the transpose of Φ which is the column vector of local NURBS basis
function (i.e. non-zero basis functions of a particular parametric element which are re-
lated to the global basis functions through a connectivity function, see [2]), {D, ∆D, T}
and

{
D̃, ∆D̃, T̃

}
denote the control variables of the trial and test functions, respectively.

The NURBS basis functions are also used to approximate the geometry, i.e. the integration
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domain of the governing equations. For an integral of a function defined on a physical
domain Γe ⊂ Γ, the integral is evaluated as∫

Γe

f (x)ds =
∫ ζi+1

ζi

f (x (ζ)) Jζdζ, (23)

in which the physical domain Γe is transformed to the parametric domain Γ̂e = [ζi, ζi+1]
by the mapping (21) and the Jacobian Jζ is defined as

Jζ =

√(
dx1

dζ

)2

+

(
dx2

dζ

)2

. (24)

Since all the kernels in the governing integral equations (8) and (9) are (at most) weakly-
singular kernels [28], the integral (23) is evaluated numerically using a standard scheme.
Details of the numerical integration used for this study can be found in [29].

4. NUMERICAL EXAMPLES

This section presents the numerical examples that we analyzed in order to verify
the accuracy of the developed method for crack problems in magneto-electro-elastic do-
mains. Both infinite and finite domains are considered so that we can compare the com-
puted results with exact solution (for the infinite-domain example) and other reference
(for the finite-domain example).

4.1. Straight crack in infinite domain
In this example, we examine the problem of a straight crack in an infinite domain.

The crack is 2a long and makes an angle of φ with respect to x1 axis as shown schemat-
ically in Fig. 2. The domain is subjected to a (mechanical) stress σ22 = σo or an electric
induction Do or a magnetic induction Bo in x2 direction at the infinity. The material em-
ployed for this example is BaTiO3−CoFe2O4 [22] with the properties shown in Tab. 1. The
polling axis the material is along x2 direction.

x1

x2

2a

σo

σo

φ

Fig. 2. Straight crack in
an infinite domain
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0.8

1
NURBS basis functions

ξ

Fig. 3. NURBS discretization for the crack of the problem
shown in Fig. 2
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Table 1. Material properties for BaTiO3−CoFe2O4 with x2 being the polling direction

Elastic moduli (109 N/m2)

C1111 C1122 C1133 C2222 C2323
226 124 125 216 44

Piezoelectric constants (C/m2) Piezomagnetic constants (N/Am)

e211 e222 e112 h211 h222 h112
-2.2 9.3 5.8 290.2 350 275

Dielectric permittivity Electromagnetic constants Magnetic permeability
(10−9 C/Vm) (10−12 Ns/VC) (10−6 Ns2/C2)

κ11 κ22 β11 β22 γ11 γ22
5.64 6.35 5.367 2737.5 297 83.5
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0
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II

 

K̄exact
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K̄exact
II

K̄I

K̄II

(a) Normalized stress intensity factors when
σo is applied
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exact
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(b) Normalized electric displacement inten-
sity factor when Do is applied
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1
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V

 

K̄
exact

V
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(c) Normalized magnetic induction intensity
factor when Bo is applied

Fig. 4. Normalized stress, electric displacement and magnetic induction intensity factors
for the problem shown in Fig. 2
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To model the crack, we use NURBS discretization as presented in Fig. 3. For this
problem, the results are uncoupled, i.e. the applied (mechanical) stress induces only stress
intensity factors KI and KI I , the applied electric induction induces only electric displace-
ment intensity factor KIV , and the applied magnetic induction induces only magnetic
induction intensity factor KV . Fig. 4 shows the computed results for KI,I I (normalized
by σo

√
πa), KIV (normalized by Do

√
πa) and KV (normalized by Bo

√
πa). Also in this

figure, the numerical results are compared with the exact solutions given in [18]. Highly
accurate numerical results are obtained.

4.2. Edged crack in finite domain

w

a

x2

x1

h

h

σo

σo

Fig. 5. Schematic of a plate
with an edged crack sub-

jected to uniform tension

To verify the accuracy of the developed method for
problems in a finite domain, we consider the problem of
a rectangular plate with an edged crack located at the mid
height of the plate as shown in Fig. 5. The plate is subjected
to a uniform (mechanical) stress σ22 = σo on the top and
bottom faces. The material employed for this example is
BaTiO3−CoFe2O4 [22] with the properties shown in Tab. 1.
For the analysis, we employed three NURBS discretizations
as shown in Fig. 6. The normalized stress intensity factor
KI/

(
σo
√

πa
)

is shown in Tab. 2 which also presents the re-
sult obtained by [23] for the purpose of comparison. We also
present the normalized electric displacement intensity factor
KIV/

(
D∗
√

πa
)

and the magnetic induction intensity factor
KV/

(
B∗
√

πa
)
, where D∗ and B∗ are the nominal electric and

magnetic induction respectively. The dimensions of D∗ and
B∗ are Cm−2 and N(Am)−1, respectively, and their magni-
tudes are equal to that of σo. It is observed that our results for
KI agree with that obtained in [23].
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Figure 5. Schematic of a plate with an edged crack subjected to uniform tension.
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Table 2. Normalized stress, electric displacement and magnetic
induction intensity factors for the problem shown in Fig. 5

Mesh # KI
σo
√

πa
KIV

D∗
√

πa
KV

B∗
√

πa
(×10−10) (×10−9)

1 2.1083 7.7598 2.1842
2 2.1042 7.7444 2.1802
3 2.1038 7.7432 2.1799

Reference

Sladek et al. [23] 2.105 - -

4.3. Edged crack in an open-end wrench
To illustrate the advantageous feature of the proposed method for solving practi-

cal problems, we consider the problem of an open-end wrench with a crack emanated
from the side of the wrench handle as shown schematically in Fig. 7. The crack has a
length of a = w/4 where w is the width of the handle. The working condition of the
wrench is approximately modeled by applying a shear traction on the end of the handle

12 Han Duc Tran and Binh Huy Nguyen

crack

Figure 7. Open-end wrench with an edged crack.

Table 3. Normalized stress, electric displacement and magnetic induction intensity factors for the
problem shown in Figure 7.

Mesh # KI

|ty |
√
πa

KII

|ty |
√
πa

KIV

D∗√πa
KV

B∗√πa
(×10−10) (×10−9)

1 22.0384 1.0714 -0.2245 0.5730
2 22.0352 1.0710 -0.2226 0.5742

employed to approximate both the geometry and the field variables of the integral equa-
tions that govern the problem. Because of that, the method does not need the geometric
discretization but reather use directly the data transferred from a CAD model. Examples
of crack in infinite and finite domains are examined and excellent agreement between the
results computed by our developed method and other references are observed.

A significant application of the proposed method is to model crack propagation
in magneto-electro-elastic media. This application could be implemented in 2D context
without any considerable effort since the growth of 2D cracks can be easily modeled by
either adding new elements in front of crack tips or stretching crack-tip element. However,
a proper criterion for crack growth initiation has not been clearly identified. This could
be a direction for our future work.
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Fig. 7. Open-end wrench with an edged crack
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and setting constraints on the jaws of the wrench as shown in the figure. Same as previ-
ous examples, the material employed for this example is BaTiO3−CoFe2O4 [22] with the
properties shown in Tab. 1. Two meshes shown in Fig. 8 are employed for the analysis.
For both meshes, 37 control points are used to describe the boundary. To describe the
crack, we use 9 control points for mesh 1 and 11 control points for mesh 2. The results
of normalized stress, electric displacement and magnetic induction intensity factors are
presented in Tab. 3 in which ty is the value of applied shear traction, a is the crack length,
D∗ and B∗ are the same as in the previous example.

Table 3. Normalized stress, electric displacement and magnetic induction
intensity factors for the problem shown in Fig. 7

Mesh # KI

|ty|√πa
KI I

|ty|√πa
KIV

D∗
√

πa
KV

B∗
√

πa

(×10−10) (×10−9)

1 22.0384 1.0714 -0.2245 0.5730
2 22.0352 1.0710 -0.2226 0.5742

5. CONCLUSION

The IGA-SGBEM has been developed for the analysis of crack problems in two-
dimensional magneto-electro-elastic media. In the method, NURBS basis functions are
employed to approximate both the geometry and the field variables of the integral equa-
tions that govern the problem. Because of that, the method does not need the geometric
discretization but reather use directly the data transferred from a CAD model. Examples
of crack in infinite and finite domains are examined and excellent agreement between the
results computed by our developed method and other references are observed.

A significant application of the proposed method is to model crack propagation
in magneto-electro-elastic media. This application could be implemented in 2D context
without any considerable effort since the growth of 2D cracks can be easily modeled by
either adding new elements in front of crack tips or stretching crack-tip element. How-
ever, a proper criterion for crack growth initiation has not been clearly identified. This
could be a direction for our future work.
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