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Abstract. Mode shapes of multiple cracked beam-like structures made of Functionally
Graded Material (FGM) are analyzed by using the dynamic stiffness method. Governing
equations in vibration theory of multiple cracked FGM beam are derived on the base of
Timoshenko beam theory; power law variation of material; coupled spring model of crack
and taking into account the actual position of neutral axis. A general solution of vibration
in frequency domain is obtained and used for constructing dynamic stiffness matrix of the
multiple cracked FGM Timoshenko beam element that provides an efficient method for
modal analysis of multiple cracked FGM frame structures. The theoretical development is
illustrated by numerical analysis of crack-induced change in mode shapes of multi-span
continuous FGM beam.
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1. INTRODUCTION

Recently, vibration of cracked FGM structures attracts enormous attention of re-
searchers in the field of structural engineering. Most of the studies rely on the basics of
fracture mechanics [1] that allows various models of crack in a structural member to be
established [2]. Using the equivalent spring model of cracks, numerous methods such as
analytical method, Galerkin and Ritz method, Finite Element Method (FEM) have been
developed for analysis of cracked FGM beams.

Yan et al. [3] calculated natural frequencies and mode shapes of cracked FGM
Euler-Bernoulli beam using the analytical method. Ke et al. [4] studied effects of open
edge cracks to vibration of FGM Timoshenko beam with different boundary conditions.
Aydin [5] established frequency equations of free vibration for FGM Euler-Bernoulli beam
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with arbitrary number of cracks. Wei et al. [6] used the transfer matrix method to ob-
tain frequency equations and mode shapes of beam with arbitrary number of open edge
cracks only in the form of third-order determinant. This is remarkable improvement in
order to study free vibration of multiple cracked FGM beam. Sherafatnia et al. [7] ana-
lyzed natural frequencies and mode shapes of cracked beam according to Euler-Bernoulli,
Rayleigh, shear deformation and Timoshenko theories. The results show that the funda-
mental mode shapes calculated from the beam theories are identical, but mode shapes
of higher modes from the second one are different. Yan et al. [8] obtained dynamic de-
flections of cracked FGM beam on elastic foundation under a transverse moving load.
Besides, Kitipornchai et al. [9] used Ritz’s method to analyze nonlinear vibration of FGM
Timoshenko beam with an open edge crack. Wattanasakulpong et al. [10] investigated
free vibration of FGM beams with general elastically end constraints by differential trans-
formation method. Akbas [11] studied free vibration and wave propagation analysis of
a cracked FGM cantilever beam. However, these results were only applied to Euler-
Bernoulli beam. The authors of Refs. [12, 13] used FEM and so-called frequency contour
method for identification of location and size of cracks in FGM beam. An analytical
method is proposed in [14] for identification of an open crack in FGM beam by measure-
ments of three natural frequencies.

As the FEM is formulated by using frequency independent polynomial shape func-
tion, the FEM cannot capture all necessary high frequencies and mode shapes of interest.
An alternative approach that enables to overcome the drawback of FEM is so-called Dy-
namic Stiffness Method (DSM). This method was developed for analysis of free vibration
of FGM beams in [15, 16]. The basics of DSM applied for free vibration analysis of FGM
beam with single crack were given in [17,18]. The present study deals with development
of the DSM for modal analysis of multiple cracked beam-like FGM structures.

First, governing equations in vibration theory of FGM Timoshenko beam are de-
rived taking into account the actual position of neutral axis. Then, general solution of
free vibration problem is obtained for multiple cracked FGM Timoshenko beam element
and used for constructing dynamic stiffness matrix of the beam element. Finally, a new
form of frequency equation and an explicit expression for mode shapes of the beam are
conducted and employed for mode shape analysis of cracked multi-span continuous
FGM beam.

2. GOVERNING EQUATIONS

Consider a FGM beam of length L, cross sectional area A = b× h. It is assumed
that the material properties of FGM beam vary along the thickness by the power law E(z)

G(z)
ρ(z)

 =

 Eb
Gb
ρb

+

 Et − Eb
Gt − Gb
ρt − ρb


(

z
h
+

1
2

)n

, −h/2 ≤ z ≤ h/2, (1)

where E, G and ρ stand for Young’s, shear modulus and material density, subscripts t and
b denote the top and bottom materials, n is power law exponent, z is co-ordinate of point
from the mid plane (Fig. 1). Based on the Hamilton’s principle, we can get free vibration
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Fig. 1. A multiple cracked FGM beam

equations of FGM Timoshenko beam in frequency domain in the form [17]

[A]
{

z′′
}
+ [ΠΠΠ]

{
z′
}
+ [D] {z} = {0} , (2)

where {z} is amplitude of axial displacement, slope and deflection

{z} = {U, Θ, W}T =

∞∫
−∞

{u0(x, t), θ(x, t), w0(x, t)}Te−iωtdt. (3)

[A], [ΠΠΠ], [D] are matrices

[A]=

 A11 −A12 0
−A12 A22 0

0 0 A33

, [ΠΠΠ]=

0 0 0
0 0 A33
0 −A33 0

, [D]=

 ω2 I11 −ω2 I12 0
−ω2 I12 ω2 I22 − A33 0

0 0 ω2 I11

,

(4)
and

(A11, A12, A22) =
∫
A

E(z)
(

1, z− h0, (z− h0)
2
)

dA, A33 = η
∫
A

G(z)dA,

(I11, I12, I22) =
∫
A

ρ(z)
(

1, z− h0, (z− h0)
2
)

dA,

h0 =
n(RE − 1)h

2(n + 2)(n + RE)
, RE =

Et

Eb
, η = 5/6.

(5)

Seeking solution of Eq. (2) in the form z0 = deλx, we obtain so-called characteristic
equation

det
(
λ2 [A] + λ [ΠΠΠ] + [D]

)
= 0. (6)

This is a cubic algebraic equation respect to s = λ2 that gives three roots s1, s2, s3.
Therefore, we get

λ1,4 = ±k1 , λ2,5 = ±k2 , λ3,6 = ±k3 , k j =
√

sj , j = 1, 2, 3.

Hence, general solution of Eq. (2) can be obtained in the form [17]

{z0(x, ω)} = [G(x, ω)] {C} , (7)
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where C = (C1, . . . , C6)T are constants, [G(x, ω)] is matrix

[G(x, ω)] =

 α1ek1x α2ek2x α3ek3x α1e−k1x α2e−k2x α3e−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1ek1x β2ek2x β3ek3x −β1e−k1x −β2e−k2x −β3e−k3x

 , (8)

and

αj =
ω2 I12

ω2 I11 + λ2
j A11

, β j =
λj A33

(ω2 I11 + λ2
j A33)

, j = 1, 2, . . . , 6. (9)

It is assumed that the beam has been cracked at different positions e1, . . . , en as
shown in Fig. 2(a) and the cracks are open and perpendicular to beam surface. Since
axial and transverse vibrations are generally coupled in FGM beam, the coupled spring
model (rotational and linear of stiffness kY

j , kX
j ) shown in Fig. 2(b) is adopted.

a    

h 

(a)

ke
Y 

ke
X 

(b)

Fig. 2. A FGM beam with an open edge crack

Therefore, conditions that must be satisfied at a crack are [17]

U(e + 0)−U(e− 0) = N(e)/kX
e , Θ(e + 0)−Θ(e− 0) = M(e)/kY

e ,

W(e + 0) = W(e− 0) , N(e) = N(e + 0) = N(e− 0) ,

Q(e + 0) = Q(e− 0) , M(e + 0) = M(e− 0) = M(e),

(10)

where N, Q and M are internal axial, shear forces and bending moment respectively

N = A11U′x − A12Θ′ , M = A12U′x − A22Θ′x , Q = A33(W ′x −Θ). (11)

Substituting (11) into (10) in case of A12 = 0, we can rewrite the conditions (10) as follows

U(e + 0) = U(e− 0) + γ1U′x(e) , Θ(e + 0) = Θ(e− 0) + γ2Θ′x(e) ,

W(e + 0) = W(e− 0), U′x(e + 0) = U′x(e− 0) ,

Θ′x(e + 0) = Θ′x(e− 0) , W ′x(e + 0) = W ′x(e− 0) + γ2Θ′x(e),

(12)

where
γ1 = A11/kX

e , γ2 = A22/kY
e . (13)

The so-called crack magnitudes γ1, γ2 introduced in (13) are functions of the ma-
terial properties such as Young’s modulus, power law exponent n and cross sectional
dimensions. For the FGM beam, the crack magnitudes can be represented in the form [14]

γ1 = γaσ1(RE, n) , γ2 = γbσ2(RE, n), (14)
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where
γa = E0A/T , γb = E0 I/R , I = bh3/12 , E0 = (Et + Eb)

/
2,

σ1(RE, n) =
2 (RE + n)

(RE + 1) (1 + n)
, σ2(RE, n) =

24
RE + 1

(
3RE + n
3(3 + n)

− 2RE + n
2 + n

α +
RE + n
1 + n

α2
)

.

(15)
In case of homogenous beam Et = Eb = E0 (RE = 1), the crack magnitudes must

be equal to γ10, γ20 that are calculated from crack depth aj for axial [19] and flexural [20]
vibration as

γ10 = E0A/T0 = 2π(1− ν2)h f1(z) , z = a/h,

f1(z) = z2(0.6272− 0.17248z + 5.92134z2 − 10.7054z3 + 31.5685z4 − 67.47z5+

+ 139.123z6 − 146.682z7 + 92.3552z8),

(16)

γ20 = E0 I/R0 = 6π(1− ν2)h f2(z),

f2(z) = z2(0.6272− 1.04533z + 4.5948z2 − 9.9736z3 + 20.2948z4 − 33.0351z5+

+ 47.1063z6 − 40.7556z7 + 19.6z8).

Therefore, for modal analysis of cracked FGM beam, crack magnitudes are pro-
posed to be approximately calculated using expression (14) with γ1 = γ10 and γ2 =
γ20 i.e.

γ1 = F1(z) = 2π(1− ν2)hσ1 f1(z) , γ2 = F2(z) = 6π(1− ν2)hσ2 f2(z). (17)

These functions would be used below for determining the springs stiffness from
given crack depth.

3. GENERAL SOLUTION OF MULTIPLE CRACKED
FGM TIMOSHENKO BEAM IN FREQUENCY DOMAIN

First, solution {zc(x)} of Eq. (2) satisfying the initial conditions

{zc(0)} = (γ1U′x(e), γ2Θ′x(e), 0)T ,
{

z′c(0)
}
= (0, 0, γ2Θ′x(e))

T , (18)

is sought by using expression (7) and it can be represented as [17]

{zc(x)} = [Gc(x)]{z′0(e)}, (19)

where
[Gc(x)] = [L(x)][ΣΣΣ] , {z′0(e)} =

(
U′0(e) Θ′0(e) W ′0(e)

)T , (20)
and

[L(x)]=

α1 cosh k1x α2 cosh k21x α3 cosh k3x
cosh k1x cosh k21x cosh k3x

β1 sinh k1x β2 sinh k2x β3 sinh k3x

·
δ11 δ12 δ13

δ21 δ22 δ23
δ31 δ32 δ33

, [ΣΣΣ]=

γ1 0 0
0 γ2 0
0 γ2 0

,

δ11 = (k3β3 − k2β2)
/

∆, δ12 = (α3k2β2 − α2k3β3)
/

∆, δ13 = (α2 − α3)
/

∆,
δ21 = (k1β1 − k3β3)

/
∆, δ22 = (α1k3β3 − α3k1β1)

/
∆, δ23 = (α3 − α1)

/
∆,

δ31 = (k2β2 − k1β1)
/

∆, δ32 = (α2k1β1 − α1k2β2)
/

∆, δ33 = (α1 − α2)
/

∆,
∆ = k1β1(α2 − α3) + k2β2(α3 − α1) + k3β3(α1 − α2).

(21)
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Using the matrix-function notation

[Ḡ(x)] =
{

[Gc(x) ] : x > 0
[0] : x ≤ 0 ,

[
Ḡ′(x)

]
=

{
[G′c(x)] : x > 0
[0] : x ≤ 0 (22)

solution of Eq. (2) satisfying conditions (12) can be expressed as

{zc(x)} = {z0(x)}+ [Ḡ(x− e)] .
{

z′0(e)
}

. (23)

Similarly, for multiple cracked beam, we get

{zc(x)} = {z0(x)}+
n

∑
j=1

[
Ḡ(x− ej)

]
.
{

µj
}

,

{
µj
}
=
{

z′0(ej)
}
+

j−1

∑
k=1

[
Ḡ′(ej − ek)

]
. {µk} , j = 1, 2, 3, . . . , n.

(24)

Substituting (7) into (24), the latter is rewritten as

{zc(x)} =
(
[G(x, ω)] +

n

∑
j=1

[
Ḡ(x− ej)

]
.
[
χ̃j
])
{C} = [Ψ (x, ω)] {C} , (25)

where

[Ψ (x, ω)] = [G(x, ω)] +
n

∑
j=1

[
Ḡ(x− ej)

]
.
[
χ̃j
]

,

[
χ̃j
]
=
[
G′(ej)

]
+

j−1

∑
k=1

[
Ḡ′(ej − ek)

]
. [χ̃k] , j = 1, 2, 3, . . . , n.

(26)

4. DYNAMIC STIFFNESS FORMULATION FOR FREE VIBRATION
OF MULTIPLE CRACKED FGM TIMOSHENKO BEAM

Consider the beam element shown in Fig. 3 with nodes labeled i and j at each end
of the element{

Ûe
}
= {U1, Θ1, W1, U2, Θ2, W2}T , {Pe} = {N1, M1, Q1, N2, M2, Q2}T , (27)

M1 

N2 N1 

1 2 

M2 
W1 

U2 

W2 

j 

Q2 

x 

Q1 

z 

L 

i 

U1 

Fig. 3. Beam element and the DOFs
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where
U1 = z1(0, ω), Θ1 = z2(0, ω), W1 = z3(0, ω),

U2 = z1(L, ω), Θ2 = z2(L, ω), W2 = z3(L, ω),

N1 = −(A11∂xz1−A12∂xz2)x=0 , M1=−(A22∂xz2−A12∂xz1)x=0 , Q1=−A33 (∂xz3−z2)x=0 ,

N2 = (A11∂xz1 − A12∂xz2)x=L , M2 = (A22∂xz2 − A12∂xz1)x=L , Q2 = A33 (∂xz3 − z2)x=L .
(28)

Substituting (28) into (25) yields{
Ûe
}
=

[
[Ψ(0, ω)]
[Ψ(L, ω)]

]
. {C} , {Pe} =

[
[−BF (Ψ)x=0]
[BF (Ψ)x=L]

]
· {C} , (29)

where [BF] is matrix operator

[BF] =

 A11∂x −A12∂x 0
A12∂x A22∂x 0

0 −A33 A33∂x

 .

Eliminating constant vector {C} in (29), we obtain

{Pe} =
[
[−BF (Ψ)x=0]
[BF (Ψ)x=L]

]
·
[

[Ψ(0, ω)]
[Ψ(L, ω)]

]−1

·
{

Ûe
}
=
[
K̂e(ω)

]
.
{

Ûe
}

, (30)

where
[
K̂e
]

is dynamic stiffness matrix of a multiple cracked FGM beam e

[K̂e] =

[
[−BF (Ψ)x=0]
[BF (Ψ)x=L]

]
·
[

[Ψ(0, ω)]
[Ψ(L, ω)]

]−1

. (31)

Assembling dynamic stiffness matrix (31) for whole structure by the conventional
procedure of FEM, free vibration problem for the structure is formulated as[

K̂(ω)
]

.
{

Û
}
= {0} . (32)

Natural frequencies {ω} = {ω1 ω2 . . . ωn} are obtained by solving the equation

det[K̂(ω)] = 0. (33)

Each root ω j of this equation is related to mode shape{
φj(x)

}
= C0

j
[
Ψ
(
x, ωj

)] [ [Ψ(0, ω)]
[Ψ(L, ω)]

]−1 {
Ûj
}

, (34)

where C0
j is an arbitrary constant,

{
Ûj
}

is the normalized solution of (32) corresponding
to ω j.

5. ANALYSIS OF MODE SHAPES OF MULTIPLE CRACKED
FGM TIMOSHENKO BEAM

5.1. Numerical validation
To validate the proposed above theoretical development, natural frequencies and

mode shapes of intact and cracked FGM beam are computed and compared to those
obtained in earlier studies.
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a) Intact FGM beam: An intact cantilever FGM Timoshenko beam with aluminum
Al2O3 in the top: Et = 390 GPa, ρt = 3960 kg/m3, µt = 0.25 and steel at the bottom:
Eb = 210 GPa, ρb = 7800 kg/m3, µb = 0.31 is examined for power law exponent n = 1
and geometry dimensions L = 1.0 m, b = 0.1 m, h = 0.1 m [16].
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Fig. 4: Comparing the first three mode shapes of intact cantilever FGM Timoshenko beam with the ones of 
Su & Banerjee [16] 
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Fig. 4. Comparing the first three mode shapes of intact cantilever FGM Timoshenko beam
with the ones of Su & Banerjee [16]

Three lowest mode shapes of intact cantilever FGM beam calculated by the above
theory are compared with those given in [16] and shown in Fig. 4. There is demonstrated
an excellent agreement between the results obtained herein and that that given by Su &
Banerjee.

b) Cracked FGM beam: A FGM beam with aluminum at the top surface: Et = 70
GPa, Eb/Et = 0.2, ρt = ρb = 2780 kg/m3, µt = 0.33 is examined for beam with power
law exponent n = 1, geometry dimensions L = 2.0 m, b = 0.1 m, h = 0.1 m and a single
crack at location 1.0 m and of the depth a/h = 20% [3].

Fig. 5 shows the fundamental mode shapes of cracked FGM beam with simple sup-
ports, clamped ends and cantilever calculated by the above theory and Yang & Chen [3].
It is observed also a good agreement of the results and this verifies again validity and
usefulness of the proposed above theory. Now we apply it for investigating mode shapes
of a FGM beam with rigid supports.
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Fig. 5. Comparing the fundamental vibration mode shapes of cracked FGM beam
with the ones of Yang & Chen [3] with different boundary conditions

5.2. Numerical illustration
Consider a multiple-span continuous beam with the following parameters: cross

section area b× h = 0.1 m × 0.1 m, Et = 70 GPa, ρt = 2780 kg/m3, µt = 0.33, Eb = 350
GPa, ρb = 7800 kg/m3, µb = 0.33 and power law exponent n = 0.5 (Fig. 6).

b 

h 

L1=0.7m L2=1.2m L3=0.6m 

Fig. 6. Multiple-span continuous beam

Figs. 7(a)-7(c) show three lowest mode shapes of multiple-span continuous beam
with various numbers of cracks (1 to 4 cracks, an equidistance 0.1 m) in the second span.
The depths of all cracks are 30%. Fig. 7(d)-7(f) show the deviation of first three mode
cracked shapes from the intact ones. It can be seen from the figures that increasing num-
ber of cracks leads to change in mode shapes of whole the beam but significant deviation
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is observed at only cracked span, where mode shapes are suddenly changed at the crack
positions. On other uncracked spans, the mode shapes are still smooth.
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Fig. 7. Deviation of first three mode shapes of the multi-span continuous FGM beam with various
numbers of cracks (from 1 to 4 cracks) in the second span

Fig. 8 show the change in mode shape of first (Figs. 8(a)-8(c)), second (Figs. 8(d)-
8(f)) and third (Figs. 8(g)-8(i)) modes of the beam that has 1 crack in the intermediate
span. The crack are located at the position 0.2 m, 0.3 m, 0.4 m respectively and depth
varying from 10% to 30%.
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Fig. 8. Deviation of first three mode shapes of the multiple-span continuous FGM beam
with different crack locations in the second span from left node end

Observing graphs in the figures allows one to make some remarks as follows:
- At crack positions, the deviations of the mode shapes reach a peak at the same

point of crack position, but it is not maximum value. It is useful indication for localizing
crack in the structures by using wavelet transformation of mode shapes.

- The deviation of the mode shapes increases with the increasing crack depth. that
enables to estimate also crack depth by wavelet coefficient of mode shape at the crack
location.

- At cracked span, the mode shapes change suddenly, while on the other intact
spans the mode shapes change smoothly.

- There are some positions in which the cracks do not influence upon the mode
shapes, for example: the crack at position 0.2 m from left node of the second span cause
no change in first mode shape at position of 1.05 m (Fig. 8(a)), second mode shape at
position 1.12 m (Fig. 8(d)) and third mode shape at position 1.35 m (Fig. 8(g)). Thus,
these positions are called the invariable points of the mode shape ad they are differenced
from the position where the mode shapes have vanished (zero amplitude).

All the mentioned remarks provide useful tool for crack detection in FGM beam-
like structures by measurement of mode shapes.

6. CONCLUSIONS

In this article, mode shapes of FGM Timoshenko beam-like structures with mul-
tiple cracks are examined using the power law distribution of FGM material, coupled
spring model of crack and actual position of neutral axis. The frequency equation and
mode shape obtained provides a simple approach to study not only free vibration of the
structures but also inverse problem like identification of material and crack parameters
in structures.

Numerical study on crack-induced change in first three mode shapes of multi-
ple cracked FGM multi-span continuous beam shows that mode shapes of the beam are
dependent on material properties; geometric parameter and also are sensitive to crack.
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Namely, there are suddenly changes in mode shapes at crack positions (sharp leaks) and
increasing crack depth leads to larger change in the mode shapes. At cracked span, the
mode shapes change suddenly, while the mode shapes change smoothly on the other in-
tact spans. The obtained results are basic for next research to determine number, locations
and depth of cracks in beam-like FGM structures.
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