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Abstract. A Fourier-based method is adopted to determine the permeability of periodic
porous media made up of a rigid skeleton saturated by viscous fluid. The flow, induced by
a prescribed macroscopic gradient of pressure, adopts the Stokes equations with incorpo-
rating a condition of adherence at the surface of the solid. The permeability is determined
by solving a linear problem on a unit cell for which we determine the local velocity fields
due to a prescribed gradient of pressure. The method uses the Fourier Transformation and
exact expressions of the periodic Green tensor in the Fourier space. It is shown that the
resolution of the problem requires an introducing of undetermined forces acting within
the solid phase.

Keywords: Porous media, permeability, homogenization, Fast Fourier Transform, viscous
fluid.

1. INTRODUCTION

The determination of the permeability of porous media is of a fundamental im-
portance in several practical problems in mechanics and civil engineering (biomechanic,
petroleum, the flow in micro and nano systems, etc.). Different numerical approaches
have been proposed in the literature for computing the permeability of periodic porous
media. For instance, [1–4] use expansions along eigenfunctions. However, those studies
reduce their analysis to some simple geometrical configurations such as the flow through
regular arrays of cylinders or spheres. Standard numerical methods, such as the Finite
Element one, can be used for computing the permeability of porous media, see for in-
stance [5–9].

An alternative method to the Finite Element one has been proposed in the middle
of the nineties by Moulinec et al. [10] in the context of linear elastic composites. This
method uses an iterative scheme for computing the solution of the Lippmann-Schwinger
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equation. The recurrence relation uses the exact expression of the Green tensor in the
Fourier space and a representation of the elastic law in the real space. In this approach
the elastic law is computed at each points of a regular grid, to avoid the difficulty due
to meshing a multiphase unit cell. Particularly the method is adapted for complex mi-
crostructures, such as pixelized images, for which no additional treatment is required.

The Stokes equation present similarities with the equation of elasticity which justi-
fies the use of the FFT based approach for computing the permeability. More precisely, the
problem of the flow through a rigid skeleton can be interpreted in term of a linear viscous
composite containing rigid inclusions. As classically in the framework of the homoge-
nization of the periodic microstructures applied to porous media, the flow is generated
by a prescribed macroscopic gradient of pressure which is interpreted as body forces for
the equivalent linear viscous composite. However the application of the method using
the FFT encounters a difficulty that does not appears in the context of linear composites.
Indeed, the approach use a regular grid (such as in the Finite Difference Method) which
requires to proceed to a continuation by continuity of the mechanical fields within the
rigid inclusion. Within the solids there exists forces and couples which equilibrate the
gradient of pressure and which can be only determined for simple geometrical configu-
rations (such as the flow through regular array of cylinders or spheres).

2. THE STOKES FLOW AND ITS EQUIVALENT COMPOSITE PROBLEM

We consider a periodic porous medium saturated by a homogeneous Newtonian
viscous fluid with the dynamic viscosity µ f . The periodic medium can be represented by
a parallepipedic (rectangular for 2D problems) unit cell and three vectors (2 vectors for
2D problems) of spatial invariance. We define by Vf the volume of the fluid, by Vs the
volume of the rigid skeleton and by V = Vf ∪ Vs the total volume of the unit cell. The
surface of contact between the fluid and the solid is denoted ∂Vs. The flow is assumed to
be incompressible and obey to the Stokes equations

µ f ∆v(x) +∇p(x) = 0, ∀x ∈ Vf

div(v(x)) = 0, ∀x ∈ Vf

v(x) = 0, ∀x ∈ ∂Vs

(1)

In the above relations, v(x) and p(x) are respectively the local velocity field and pressure.
The flow of the fluid is generated by a prescribed macroscopic pressure gradient, denoted
by G. Consequently, the local pressure is decomposed as follows p(x) = p∗(x) + G.x in
which p∗(x) is periodic. At the local scale, the components of the velocity field v(x)
linearly depends on the components of the macroscopic pressure gradient

v(x) = A(x).G, (2)

where Aij(x) depends on the position vector, x. As shown in the framework of the ho-
mogenization applied to porous media [11], the average value over the unit cell of the
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velocity field reads

V =< v(x) >V= −
1

µ f
K.G , (3)

where V is called as macroscopic velocity field and K is the permeability tensor.

K =< A(x) >V . (4)

The problem defined by Eqs. (1) presents a similarity with a problem of a linear viscous
periodic composite with rigid inclusions

ε̇(x) =
1
2
(∇v(x) +∇tv(x)), ∀x ∈ V

ε̇(x) = S(x) : σ(x), ∀x ∈ V

div(σ(x)) + f (x) = 0, ∀x ∈ V

σ(x).n, antiperiodic

v(x), periodic

(5)

In the above equations, the local strain rate ε̇(x) and the local stress σ(x) are peri-
odic and their volumic mean over the unit cell is null: < ε̇(x) >V= 0 and < σ(x) >V= 0.
A continuation by continuity of the mechanical fields is effected within the solid volume,
Vs. Classically, when the Finite Element Method (FEM) is used for solving the system
of Eqs. (1), only the fluid phase is meshed. The surface ∂Vs is considered as the domain
boundary on which the Dirichlet condition, v = 0, is applied. The FFT method uses the
discrete Fourier transform and then consist to discretize the unit cell by means of a reg-
ular grid as done with the Finite Difference Method. The points of that grid are located
within the fluid or the solid phase which explain why a continuation by continuity of the
strain and stress is needed.

The fourth order tensor S(x) is given by

S(x) =
1

2µ(x)
K with : µ(x) =

 µ f ∀x ∈ Vf

+∞ ∀x ∈ Vs

(6)

where K = I− J with J = 1
3 I ⊗ I and I is the fourth order identity tensor. Note that in

(5) the local stress contains a spherical part: p(x)I. Since K : I = 0, the incompressibil-
ity (tr(ε̇) = 0) is recovered within the fluid. In the solid phase, the components of the
compliance S(x) are infinite, the strain rate is then null. Classically, in the context of the
homogenization of elastic periodic composite, prescribed macroscopic strain or stress are
prescribed over the unit cell. In the present case, the macroscopic loading parameter is
the macroscopic gradient of pressure (Fig. 1) which appears in (5) as body force

f (x) =

 G ∀x ∈ Vf

? ∀x ∈ Vs

(7)



124 Nguyen Trung Kien, Nguyen Duy Hung

Fig. 1. Unit cell with boundary conditions: G is the macroscopic gradient of pressure,
F is the body force in solid, n is the normal vector

In the above expression, the body force are undetermined within the solid phase
(in Vs). This is discussed in the next section.

3. THE FOURIER BASED METHOD

Due to the similarity of the Stokes equations with the problem of linear composites
we propose a similar method for computing the velocity field of the periodic porous
medium. The method is stress based, since the equivalent periodic composite is made up
of rigid inclusions (the strain based approach [10] diverge in that case).

In the present case, body forces are prescribed over the unit cell instead of macro-
scopic strain and stress, then we generalize the Lippmann-Schwinger equation in that
context and we propose a FFT based iterative scheme for computing the solution of that
integral equation.

3.1. The Lippmann-Schwinger equation of the Stokes flow
In (5), the compatibility and the equilibrium are local equations in the Fourier space

since they reduce to algebraic relations. On the other hand, the local behavior, ε̇(x) =
S(x) : σ(x), is local in the real space but it becomes non local in the Fourier space. To
circumvent this difficulty, it is classically introduced a reference medium of compliance
S0, and the eigenstrain η(x) by

η(x) = (S(x)− S0) : σ(x) or η(ξ) = (S(ξ)− S0) ∗ σ(ξ). (8)

In the Fourier space, the system of Eqs. (5) can then be expressed in the form of (see
Appendix A)

∀ξ 6= 0 :


P(ξ) : σ(ξ) + b(ξ) = 0

Q(ξ) : ε̇(ξ) = 0

ε̇(ξ) = S0 : σ(ξ) + η(ξ)

(9)
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Eliminating the strain rate ε̇(ξ) in the above equations, we obtain

∀ξ 6= 0 :


P(ξ) : σ(ξ) + b(ξ) = 0

Q(ξ) :
[
S0 : σ(ξ) + η(ξ)

]
= 0

(10)

Where tensors P(ξ) and Q(ξ) are defined by

Q(ξ) = E1(ξ) + E3(ξ), P(ξ) = E2(ξ) + E4(ξ).

In which the En(ξ) for n = 1 . . . 4 are the first four tensors of the Walpole basis [12]
given by 

E1(ξ) =
1
2 k⊥ ⊗ k⊥, E2(ξ) = k⊗ k

E3(ξ) = k⊥⊗k⊥ −E1, E4(ξ) = k⊥⊗k + k⊗k⊥

E5(ξ) = k⊗ k⊥, E6(ξ) = k⊥ ⊗ k

(11)

where k and k⊥ are given by

k =
1
|ξ|2 ξ ⊗ ξ, k⊥ = I − k. (12)

Tensors P(ξ) and Q(ξ) are the two projectors

∀ξ 6= 0 :


P(ξ) : P(ξ) = P(ξ), Q(ξ) : Q(ξ) = Q(ξ)

P(ξ) : Q(ξ) = Q(ξ) : P(ξ) = 0

I = P(ξ) + Q(ξ)

(13)

From (10), it is observed that P(ξ) : b(ξ) = b(ξ) and Q(ξ) : b(ξ) = 0.
The two order tensor b(ξ), depends on the body force

b(ξ) =
i
‖ξ‖4

[
ξ ⊗ ξ f (ξ).ξ − ( f (ξ)⊗ ξ + ξ ⊗ f (ξ))‖ξ‖2

]
. (14)

A combination of the two relations of (10) gives

∀ξ 6= 0 :
[
Q(ξ) : S0 : Q(ξ)

]
: σ(ξ) = Q(ξ) :

[
S0 : b(ξ)− η(ξ)

]
. (15)

The linear operator Q(ξ) : S0 : Q(ξ) is not invertible since Q(ξ) is a projector. However, it
can be inverted according to Q(ξ), and its inverse is ∆0(ξ), the Green tensor for the strain
which can be expressed, in the Walpole basis, by

∆0(ξ) =
2µ0(3λ0 + 2µ0)

λ0 + 2µ0
E1(ξ) + 2µ0E3(ξ). (16)
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where µ0 and λ0 are Lame moduli of the reference medium. The solution of (15) is

Q(ξ) : σ(ξ) = ∆0(ξ) :
[
S0 : b(ξ)− η(ξ)

]
. (17)

Moreover, the projection along P(ξ) of the stress field σ(ξ) is known (see Eq. (10)). The
total stress is then given by

σ(ξ) = −b(ξ) + ∆0(ξ) :
[
S0 : b(ξ)− η(ξ)

]
. (18)

Note that the Green tensor for the stress, ∆0(ξ) is related to the Green tensor for the strain,
Γ0(ξ), by ∆0(ξ) = C0 − C0 : Γ0(ξ) : C0. The above expression can then be also put into
the form

σ(ξ) = −C0 : Γ0(ξ) : b(ξ)− ∆0(ξ) : η(ξ). (19)

Note that the expression of the Green tensor for the strain, Γ0(ξ), is, in the Walpole basis

Γ0(ξ) =
1

λ0 + 2µ0
E2(ξ) +

1
2µ0

E4(ξ). (20)

Replacing η(ξ) in (19) by its expression (8), we finally obtain the searched equation

σ(ξ) = −C0 : Γ0(ξ) : b(ξ)− ∆0(ξ) :
[
(S(ξ)− S0) ∗ σ(ξ)

]
. (21)

Eq. (21) is the Lippmann-Schwinger equation for the stress, in the presence of the body
forces f (x).

3.2. The FFT-based iterative scheme
As in [10], and along the lines of a method which was first introduced for composite

conductors by Brown [13] and later by Kroner [14], the solution of the integral equation
(21) can be expanded along Neumann series. Each term of the series is obtained by the
following recurrence relation

σi+1(ξ) = −C0 : Γ0(ξ) : b(ξ)− ∆0(ξ) :
[
(S(ξ)− S0) ∗ σi(ξ)

]
, for ξ 6= 0

σi+1(ξ) = 0, for ξ = 0
(22)

which is initiated by

σi=1(ξ) = −C0 : Γ0(ξ) : b(ξ). (23)

A simplification of the iterative scheme (22) is possible. The following relation hold at
each iteration i

∆0(ξ) : S0 : σi(ξ) = σi(ξ) + C0 : Γ0(ξ) : b(ξ). (24)
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The iterative scheme (22) reduce to
σi+1(ξ) = σi(ξ)− ∆0(ξ) : (S(ξ) ∗ σi(ξ)), for ξ 6= 0

σi+1(ξ) = 0, for ξ = 0
(25)

It is interesting to observe that the body forces does not appears in the iterative scheme
(25). Then the obtained recurrence relation is equivalent to the one used in the context
of elastic composites with prescribed macroscopic stress [15, 16]. However the proposed
algorithm for porous media differs from the one used for composites by the first term of
the recurrence relation which depends on the body forces f (x).

The exact Fourier transform is then replaced by the discrete Fourier transform
which is computed by the FFT algorithm. The discrete wave vectors, ξ

n
, are taken from

n = −N to n = N, and by xn we denote the position of the nodes of the regular grid in
the real space. The algorithm is summarized below

σi(xn) = F−1(σi(ξ
n
))

εi(xn) = S(xn) : σi(xn)

ε̇i(ξ
n
) = F (ε̇i(xn))

convergence test

σi+1(ξ
n
) = σi(ξ

n
)− ∆0(ξ

n
) : εi(ξ

n
)

(26)

Note that the stress complies with the equilibrium at each step i of the iterative scheme.
However, the strain rate complies with the compatibility only at convergence of the iter-
ative scheme. The following convergence test is then used

‖Q(ξ
n
) : ε̇(ξ

n
)‖

‖ε̇(ξ
n
)‖ < ε, (27)

where ‖ • ‖ denote the Frobenius norm. Value ε = 10−3 is used in the present work.
At convergence of the iterative scheme, one can compute the velocity associated to

the strain rate field εi(ξ
n
). Using the incompressibility condition (v(ξ

n
).ξ

n
= 0), one has

v(ξ
n
) = − 2i

‖ξ
n
‖2 ε̇(ξ

n
).ξ

n
, for ξ

n
6= 0

v(ξ
n
) = ?, for ξ

n
= 0

(28)

At convergence of the iterative scheme, the velocity field is defined by its Fourier coeffi-
cients for all values of ξ

n
except for ξ

n
= 0. It means that the velocity field is defined up

to an added constant. The reason for such a result is that the condition v(x) = 0 within
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the solid phase has never not been taken into account. As for the body force, the method-
ology leading to the identification of the macroscopic velocity field is depicted in the next
section.

4. VALIDATION OF THE APPROACH IN THE CASE OF
REGULAR ARRAYS OF CYLINDERS AND SPHERES

4.1. Flow through regular arrays of cylinders
In this section, it is proposed to apply the method in the context of flows through

regular arrays of cylinders and to compare our numerical results with other solutions
provided in the literature. The porous medium is then defined by a network of cylinders
of radius a, aligned in the direction 0x3. Fig. 2(a) represents the case of a tetragonal ar-
rangement of the cylinders while Fig. 2(b) shows the case of the hexagonal arrangement.
In the case of a tetragonal array of cylinders, the unit cell is defined by a square of half
width b containing a circular inclusion of radius a. In the case of a hexagonal array, the
unit cell is defined by a rectangle with the half width b and b

√
3 along directions Ox1

and Ox2 respectively (b then represent the half distance between the axis of neighboring
cylinders).  

(a)

 

(b)

Fig. 2. Tetragonal (a) and Hexagonal (b) array of cylinders

For both configurations, the permeability tensor is defined by its nonzero compo-
nents K11 = K22 and K33. In order to determine that components of the permeability, the
two following loading cases are considered:

- A plane loading: G1 = 1, G2 = G3 = 0.
- An antiplane loading: G1 = G2 = 0, G3 = 1.
In the first loading case (the plane problem), the cylinders are kept fixed by apply-

ing, within the solid phase, the uniform body force f1 = F1 and f2 = f3 = 0. Indeed, the
presence of forces along Ox2 or couples around Ox3 is excluded due to the symmetry of
the unit cell. If we consider a uniform body force fi within the inclusion and considering
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the equilibrium of the unit cell, < fi >V= 0, it is easy to check that F1 is given by

F1 = −
φ f

φs
G1 , (29)

where the volume fraction of the solid phase is φs = πR2/S in the case of a tetragonal
array, but is given by φs = 2πR2/S in the case of a hexagonal array (S represents the
area of the unit cell). It is recalled that φ f = 1− φs is the volume fraction of the fluid.
Similarly, in the second loading case (antiplane problem), the reaction of the cylinder is
characterized by a force F3, defined by

F3 = −
φ f

φs
G3 . (30)

To summarize, the body force, in the real space reads

Plane problem: f1(x) =
(

1− 1
φs

Is(x)
)

G1, f2(x) = f3(x) = 0.

Antiplane problem: f1(x) = f2(x) = 0, f3(x) =
(

1− 1
φs

Is(x)
)

G3.
(31)

whereas in the Fourier space it reads

Plane problem:

 ∀ξ 6= 0 : f1(ξ) = − 1
φs

G1 Is(ξ), for ξ = 0 : f1(ξ) = 0

f2(ξ) = f3(ξ) = 0

Antiplane problem:

 f1(ξ) = f2(ξ) = 0

∀ξ 6= 0 : f3(ξ) = − 1
φs

G3 Is(ξ), for ξ = 0 : f3(ξ) = 0

(32)

The characteristic function of the solid phase, Is(ξ) can be exactly computed in the
Fourier space since it is defined by simple geometrical volume (see Bonnet [16]).

At convergence of the iterative scheme (26), the velocity field is only known for
ξ

n
6= 0 (see (28)) but its volume average V is still unknown. The reason is that the con-

dition v(x ∈ Vs) = 0 has not been verified. Then we compute the periodic velocity field
due the prescribed gradient of pressure G1 and G3 denoted v(1)(x), v(3)(x) and having a
zero volume average. The total velocity field yields

v(x) = V + v(1)G1 + v(3)G3 . (33)

The condition v(x ∈ Vs) = 0, leads to the following expressions for the macroscopic
components of the velocity

V1 = −v(1)1 (x ∈ Vs)G1 ,

V3 = −v(3)3 (x ∈ Vs)G3 ,
(34)

which finally leads to the identification of the components of the permeability tensor.
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On Fig. 3 we represent the normalized longitudinal and transverse permeability
as function of the ratio a/b for the tetragonal array of cylinder, a being the radius of the
cylinder and b the half width of the unit cell (the cell being square in that example). On
Fig. 3 the components of the permeability are normalized according to the area of the unit
cell, S = 4b2. As a validation purpose, the FFT results are compared with other existing
results obtained from the literature by Wang [4], Sangani and Acrivos [1], Sparrow and
Loeffler [17]).

 

Fig. 3. Normalized permeabilities K11/S and
K33/S as function of the ratio a/b for the tetrag-
onal array of cylinder of radius a. b is the half
distance between two neighboring cylinders

 

Fig. 4. Normalized permeabilities K11/S and
K33/S as function of the ratio a/b for the hexag-
onal array of cylinder of radius a. b is the half
distance between two neighboring cylinders

On Fig. 4 we represent the normalized longitudinal and transverse permeability
as function of the ratio a/b for the hexagonal array of cylinder, a is the radius of the
cylinders and b is the half size of the unit cell in the direction Ox1. Along the direction
Ox2, the half distance of the unit cell is

√
3b. The components of the permeability are still

normalized according to the area of the unit cell, which is here: S = 4
√

3b2. Again the
FFT based numerical solutions are compared to the results provided by Wang [4].

4.2. Flow through regular arrays of spheres
It is now proposed to validate the approach by comparisons with existing results

in the case of three-dimensional flows through arrays of spheres of radius a. The unit cell
is defined by a cuboid of half width b. The following three classical configurations has
been considered in our calculations:

• The simple cubic structure (SC). The unit cell is defined by a cube of side 2b
which contains a sphere of radius a centered at x = 0. The volume fraction of
the solid attained its maximum φs = π/6 when a = b.
• The centered cubic structure (CC). The basic cell contains two sphere of radius

a. The maximum concentration of solid phase is
√

3π/8 when a = b.
• The face-centered cubic structure (FCC). The unit contains 4 spheres of radius

a and the concentration is
√

2π/6. This is the most compact configuration.
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Due to the symmetries of the unit cell allows the permeability tensor is isotropic
K11 = K22 = K33 and Kij = 0 for i 6= j. The component K11 is computed by applying
the component G1 of the gradient of pressure. As in the last example, the body force is
fully described in the solid phase. In each inclusion the body force reads f1 = F1 where
F1 is given by (29). The periodic, with a null volume average, is then computed for a
prescribed value of G1, denoted v(1)1 (x ∈ Vs). Following the method described in the case
of cylinders, the macroscopic component of the macroscopic velocity field is computed
as: V1 = −v(1)1 (x ∈ Vs)G1.

The case of a flow through networks of spheres has been studied by Sangani and
Acrivos [2], Kadaksham et al. [18], Chapman and Higdon [19]. For reasons of clarity,
our numerical solutions are compared only with the ones provided by Chapman and
Higdon [19]. In Fig. 5 we represent the normalized permeability K11/4b2 as function of
the ratio a/b (where it is recalled that a is the radius of the rigid spheres) and for each
configurations (CS,CC and FCC).

 

Fig. 5. Normalized permeability for the Simple Cubic (SC), Face Centered Cubic array (FCC)
and centered cubic array (CC) of spheres of radius a

5. CONCLUSION

In the present paper we have proposed a numerical Fourier based method for com-
puting the permeability of periodic porous media. The principle of the approach consist
to re-write the problem of the Stokes flow into an equivalent problem of linear composite
and to solve it by means of an iterative scheme similar to the ones introduced in [10, 16].
It has been the resolution of the Stokes problem lead to some specifical difficulties which
does not appears in the context of elastic composite. The flow through a porous media
can be interpreted as an elastic problem with prescribed body forces which can be only
determined for simple geometrical configurations. The implementation of the method
and comparisons with results in the literature for plans and three-dimensional flow have
illustrated the reliability of the approach.
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Appendix A. Compatibility and equilibrium

The relation yielding the strain rate tensor as function of the velocity field is, in the
Fourier space

ε(ξ) = iv(ξ)
s
⊗ ξ , (35)

which can be also read ∀ξ 6= 0

ε(ξ).k =
i
2

[
v(ξ)⊗ ξ + k(ξ.v(ξ))

]
, (36)

where k has been introduced in (12). It follows that

ε(ξ).k + k.ε(ξ) = iv(ξ)
s
⊗ ξ + ik(ξ.v(ξ)). (37)

Taking into account relation (35) and that tr(ε(ξ)) = iξ.v(ξ), the above expression can be
put on the form

ε(ξ).k + k.ε(ξ) = ε(ξ) + (ε(ξ) : k)k. (38)

Or, equivalently

k⊥.ε(ξ).k⊥ = 0. (39)

where k⊥ = I − k. The above equation is exactly Q(ξ) : ε(ξ) = 0.
The equilibrium for σ(ξ) reads, in the Fourier space

iσ(ξ).ξ + f (ξ) = 0. (40)

Which can be also put into the following equivalent form, ∀ξ 6= 0

σ(ξ).k =
i
‖ξ‖2 f (ξ)⊗ ξ. (41)

It can then be easily shown that

P(ξ) : σ = σ(ξ).k + k.σ(ξ)− (σ(ξ) : k)k = −b(ξ), (42)

where b(ξ) is defined by (14).
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