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Abstract. This paper presents the free vibration of a cracked double-beam carrying a con-
centrated mass located at an arbitrary position. The double-beam consisting of two differ-
ent simply supported beams connected by an elastic medium is modelled by using finite
element method. The influence of the concentrated mass on the frequencies and mode
shapes is investigated. The relationship between the natural frequency and the location of
concentrated mass is established and related to the mode shapes. The numerical simula-
tions show that when there is a crack, the frequency of the double-beam changes sharply
when the concentrated mass is located close to the crack position. This sharp change can
be amplified by wavelet transform and this is useful for crack detection. The crack location
can be determined by the location of peaks in the wavelet transform of the relationship be-
tween frequency and mass location.
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1. INTRODUCTION

The elastically connected beam structures are widely used in various engineering
fields, such as multiple-walled carbon nanotubes, tall building, continuous dynamic vi-
bration absorber, ect. as presented in [1, 2]. These complex continuous systems have
three important structural performances: weight reduction, strength and stiffness in-
crease, and vibration absorption which can be applied in practice. The vibration anal-
ysis of elastically connected double beams has been investigated by many researchers
and obtained interesting achievement. Oniszczuk [1] presented the exact solutions for
free vibrations of two parallel simply supported beams continuously joined by a Winkler
elastic layer. Mao [2] proposed the Adomian modified decomposition method to ana-
lyze the free vibration of elastically multiple-beams. Oniszczuk [3] presented undamped
forced transverse vibrations of an elastically connected simply supported double-beam
system subjected to arbitrarily distributed continuous loads using the modal expansion
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method. Rao [4] studied the free response of Timoshenko beam systems taken into ac-
count the effects of rotary inertia and shear deformation. Chen and Sheu [5] modelled a
composite material by elastically connected beams to analyze the vibration of an axially
loaded double Timoshenko beam. Shamalta and Matrikine [6] investigated the steady-
state dynamic response of an embedded railway track subjected to a moving train. Vu
et al. [7] proposed an exact method for analyzing the vibration of a double-beam system
subjected to a harmonic excitation. Hoppmann [8] proposed a method for solving the dif-
ferential equations of motion of an elastically connected double-beam system subjected
to an impulsive load.

However, many aspects of the vibration problem of double-beam systems such as
the influence of concentrated masses, the influence of cracks on the vibration of double-
beam systems have not been addressed, while these influences on the vibration of single
beams have been investigated by many researchers. Salarieha and Ghorashi [9] inves-
tigated free vibration of Timoshenko beam with finite mass rigid tip load and flexural–
torsional coupling. Liu and Yeh [10] presented Rayleigh-Ritz method in conjunction with
beam functions satisfying all end conditions to study the free vibration of a restrained
non-uniform beam with intermediate masses. Wu and Lin [11] used an analytical and
numerical-combined method to study the free vibration of a uniform cantilever beam
with point masses. The influence of concentrated mass on the natural frequencies of
a single cantilever beam was investigated. Banerjee [12] proposed a dynamic stiffness
method to study the free vibration of beams carrying spring-mass systems. Liu et al. [13]
analysed the eigenvalues and eigenfunctions for a beam hinged at both ends by rotational
springs and carrying arbitrary located concentrated masses using Laplace transformation
method. Goel [14] studied the free vibration of a cantilever beam carrying a concentrated
mass at an arbitrary intermediate location.

The influence of the crack(s) on characteristics of single beams such as natural fre-
quencies and mode shapes have also been studied and used for detecting the existence,
location and sizes of the crack(s). Gudmundson [15] presented a perturbation method
and a transfer matrix approach to investigate the influence of small cracks on the natural
frequencies of slender structures. Pandey et al. [16] investigated the change in curvature
mode shapes to inspect the location of the crack. Vakil-Baghmisheh [17] applied genetic
algorithms for crack detection of beam-like structures. Orhan [18] used finite element
method to investigate the relationship between natural frequency of a cracked beam to
the depth and location of the crack. Lee et al. [19] investigated the influence of a crack
on natural frequencies and mode shapes of a beam. Khaji et al. [20] presented closed-
form solutions for crack detection problem of Timoshenko beams with various boundary
conditions. Caddemi and Calio [21] derived the exact closed-form solution for the vibra-
tion modes of the Euler-Bernoulli beam with multiple open cracks. Vakil-Baghmisheh
et al. Zhong and Oyadiji [22] presented a wavelet-based method for crack detection of
simply-supported beams by continuous wavelet transform of reconstructed modal data.
Recently, the author of this paper [23] applied 3D finite elements to calculate the mode
shapes of a cracked beam. This study showed that the distortion in mode shapes using
3D element model can be applied for detection small cracks.
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This work aims to investigate the influence of the concentrated mass on the free
vibration of a cracked double-beam and its application for crack detection. The natu-
ral frequencies and mode shapes of the cracked double-beam carrying a concentrated
mass are calculated by using finite element method. When the concentrated mass is at-
tached on the double-beams there are changes in natural frequencies depending on the
mass position. The changes in natural frequencies can be related to the amplitudes of the
corresponding mode shapes at the position of the concentrated mass. The relationship
between the natural frequencies and the mass location is established and called “Mass
Location - Frequency” (MLF). When the concentrated mass is located close to crack po-
sitions there are sharp changes in the MLFs at these positions. Inspecting these irregular
changes by applying wavelet transform, the crack locations can be determined.

2. FREE VIBRATION EQUATION OF A BEAM WITH CONCENTRATED MASS

2.1. Intact double-beam
The finite element model of the double-beam system consisting of two different

Euler-Bernoulli beams with rectangular sections connected by a Winkler elastic layer with
stiffness modulus km per unit length is presented in Fig. 1. The length of the double-beam
is L. Each of the main and auxiliary beams is divided by Q equal elements with length
of l. The main beam carries a concentrated mass m at section xm. In this study, the
undamped vibrations of the system are considered.

The free motion equation of an element of the double-beam system can be derived
by using Hamilton’s principle as follows [24].
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Fig. 1. A double-beam element carrying a concentrated mass

Using a local coordinate system having its origin at the center of the element, and
the element is defined from−l/2 to +l/2, the kinetic energy of a double element carrying
the concentrated mass can be written as

T =
1
2

ḋT
e1

 l/2∫
−l/2

[mδ(x− xm) + ρ1]NTNdx

 ḋe1 +
1
2

ḋT
e2

 l/2∫
−l/2

ρ2NTNdx

 ḋe2 , (1)

where ρ1 and ρ2 are the material densities of the main and auxiliary elements per unit
length, respectively; δ is delta Dirac function; ḋe1 and ḋe2 are the velocity vectors of the
main and auxiliary elements; N is shape function.
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Denote that

m∗=
l/2∫
−l/2

mδ(x− xm)NTNdx = mNTN, me1 =

l/2∫
−l/2

ρ1NTNdx, me2 =

l/2∫
−l/2

ρ2NTNdx, (2)

Substitute (2) into (1) we have

T =
1
2

ḋT
e1m∗ḋe1 +

1
2

ḋT
e1me1ḋe1 +

1
2

ḋT
e2me2ḋe2. (3)

Here: me1 and me2 are the element mass matrices of the main and auxiliary beams;
m∗ is the additional matrix of the concentrated mass.

Denote
m∗e1 = me1 + m∗. (4)

Substitute (4) into (3), we have

T =
1
2

ḋT
e1m∗e1ḋe1 +

1
2

ḋT
e2me2ḋe2. (5)

The potential energy of the system can be obtained

Π =
1
2

dT
e1ke1de1 +

1
2

dT
e2ke2de2 +

1
2

(
dT

e1 − dT
e2

)
k∗m (de1 − de2) , (6)

where ke1 and ke2 are element stiffness matrices of the main and auxiliary beam; de1 and
de2 are the displacement vectors of the main and auxiliary elements, and

k∗m =

l/2∫
−l/2

km (x)NTNdx. (7)

The Lagrangian can be established

L = T −Π, (8)

or

L =
1
2

ḋT
e1me1ḋe1 +

1
2

dT
e1m∗ḋe1 +

1
2

ḋT
e2me2ḋe2 −

1
2

dT
e1ke1de1

− 1
2

dT
e2ke2de2 −

1
2

(
dT

e1 − dT
e2

)
k∗m (de1 − de2) .

(9)

Applying Hamilton’s principle

δ

t2∫
t1

Ldt = 0, (10)

with the initial conditions δde1 = 0 and δde2 = 0 at moments t = t1 and t = t2, the
governing equations for free vibration of an element can be obtained as follows

m∗e1d̈e1 + ke1de1 + k∗m (de1 − de2) = 0,

me2d̈e2 + ke2de2 − k∗m (de1 − de2) = 0.
(11)
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Here, d̈e1 and d̈e2 are the acceleration vectors of the main and auxiliary elements; 0
is the zero column vector consisting of four elements.

Finally, the governing equations of free vibration of the double-beam in the global
coordinate system can be written as

M∗1D̈1 + K1D1 + K∗m (D1 −D2) = 0,

M2D̈2 + K2D2 −K∗m (D1 −D2) = 0.
(12)

Here M∗1 , M2, K1, K2 are global structural mass and stiffness matrices of the main
and auxiliary beams, respectively; K∗m is the global stiffness matrix of the elastic medium;
D1 and D2 are column vectors which denote the nodal displacements of the main and
auxiliary beams, respectively; 0 is the zero column vector assembled from column vec-
tors 0.

Eq. (12) can be rewritten as follows

MD̈ + KD = 0̃. (13)

Here

M =

[
M∗1
M2

]
, K =

[
K1 + K∗m −K∗m
−K∗m K2 + K∗m

]
,

D =

[
D1
D2

]
, D̈ =

[
D̈1
D̈2

]
, 0̃ =

[
0
0

]
.

(14)

2.2. Cracked double-beam
Fig. 2 shows the cracked double element model. It is assumed that the crack ap-

pears on the main beam and the crack only affects the stiffness of main beam but it does
not affect the stiffness of auxiliary beam. Meanwhile, the masses of main and auxiliary
beams remain constant. A brief description for deriving the element stiffness matrix of a
cracked element of the main beam is presented here, more details can be found from the
previous papers [25–27].
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Fig. 2. Model of a cracked double element

The stiffness matrix of the cracked element is derived by applying the principle of
virtual work

kc = TTC̃T, (15)
where

T =

[
−1 −l 1 0
0 −1 0 1

]T

. (16)
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C̃ is flexibility matrix of the cracked element which is the sum of the flexibility
matrix of the intact element C0 and the additional flexibility matrix C1 caused by the
crack. The generic components of the flexibility matrices C0 and C1 can be calculated
from the fracture mechanics as follows

c(0)ij =
∂2W(0)

∂Pi∂Pj
, i, j = 1, 2, P1 = P, P1 = M, (17)

c(1)ij =
∂2W(1)

∂Pi∂Pj
, i, j = 1, 2, P1 = P, P1 = M, (18)

where W(0) is the strain energy of the intact element; W(1) is the additional energy due
to the crack; P and M are the shear and bending internal forces at the right node of the
element (Fig. 2). Considering the bending only, W(0) and W(1) are obtained as

W(0) =
1

2EI

(
M2l + MPl2 +

P2L3

3

)
,

W(1) = b
a∫

0

(
(KIM + KIP)

2 + K2
I IP

E′

)
da,

where

KIM =
6M
√

πaFI(s)
bh2 , KIP =

3Pl
√

πaFI(s)
bh2 , KI IP =

P
√

πaFI I(s)
bh

, (19)

FI(s) =

√
2

πs
tg
(πs

2

)0.923 + 0.199
[
1− sin

(πs
2

)]4

cos
(πs

2

) , (20)

FI I(s) =
(
3s− 2s2) 1.122− 0.561s + 0.085s2 + 0.18s3

√
1− s

. (21)

Here, a is the crack depth; h is the thickness; b is the width of the beam; s = a/h.
The stiffness matrix of a cracked beam will be assembled from the stiffness ma-

trix of cracked element and intact elements of the corresponding beam. In this study,
the cracks are in the main beam, thus the global stiffness matrix K1 of the cracked beam
is assembled from the stiffness matrix of the cracked elements derived from (15) and
the stiffness matrix of intact elements. Global stiffness matrices K1 and K2 are assem-
bled following Eq. (14) to form the global stiffness matrix K of the cracked double-beam.
Substituting this global matrix K into Eq. (13) and solving this eigenvalue equation, the
frequencies and mode shapes of the cracked double-beam carrying a concentrated mass
will be obtained.

3. NUMERICAL SIMULATION

3.1. Reliability of the theory
In order to check the reliability of the theory, a double simply supported beam with

parameters adopted from Ref. [1, 2] is considered as follows.
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E2 I2 = 4 × 106 N/m2, E1 I1 = 2 × E2 I2, ρ2A2 = 100 kg/m, ρ1A1 = 2 × ρ2A2,
km = 1× 105 N/m2, L = 10 m.

Table 1. Natural frequencies of a double-beam

Natural frequencies (rad/s) Ref. [1] Ref. [2] Present paper
ω̄1 19.7 19.7392 19.7392
ω̄2 43.5 43.4699 43.4699
ω̄3 79.0 78.9568 78.9568
ω̄4 87.9 87.9442 87.9442
ω̄5 177.7 177.6529 177.6529
ω̄6 181.8 181.8256 181.8256

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(a) Mode 1

0 0.2 0.4 0.6 0.8 1

-4

-2

0
N

o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(b) Mode 2

0 0.2 0.4 0.6 0.8 1

-4

-2

0

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(c) Mode 3

0 0.2 0.4 0.6 0.8 1

-4

-2

0

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(d) Mode 4

0 0.2 0.4 0.6 0.8 1

-4

-2

0

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(e) Mode 5

0 0.2 0.4 0.6 0.8 1

-4

-2

0

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

x/L

(f) Mode 6

Fig. 3. The first six mode shapes
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In Tab. 1 are listed the six lowest natural frequencies of the double-beam without a
concentrated mass obtained by three methods. Fig. 3 shows the first six mode shapes of
the double-beam obtained by the present work. As can be seen from Tab. 2 and Fig. 3, the
first six natural frequencies and mode shapes of the present work are in close agreement
with Ref. [1] and [2]. Especially, the natural frequencies obtained by the present method
are in excellent agreement with Ref. [2].

Since there is no analogous model of a double beam carrying a concentrated mass
as presented in the present study in the literature, in order to validate the present method
the double beam is reduced to a single beam by removing the variables of the auxil-
iary beam and the elastic medium from Eqs. (1)-(14). The simulation results obtained by
the present method are then compared to Ref. [12]. Tab. 2 presents the first five natu-
ral frequencies of the double cantilever beam carrying a concentrated mass at the tip by
two methods. From this table, a close agreement between the results obtained from the
present work and Ref. [12] can be observed.

Table 2. Natural frequencies of a single cantilever beam with a lumped mass at the tip

Mass ratio
Non-dimensional

Ref. [12] Present paper
µ =

m
ρAL

natural frequency

ω̄i = ωi

√
ρAL4

EI

0

ω̄1 3.5159 3.5160

ω̄2 22.0350 22.0345

ω̄3 61.6960 61.6971

ω̄4 122.9000 120.9013

ω̄5 199.8600 199.8568

0.5

ω̄1 2.0163 2.0288

ω̄2 16.9010 17.0916

ω̄3 51.7010 52.3210

ω̄4 106.0500 107.3564

ω̄5 180.1300 182.3473

3.2. Influence of the concentrated mass on the free vibration of the intact double-beam
In this section the MLFs of natural frequencies are established to study the influ-

ence of the position of concentrated mass on natural frequencies of the double-beam.
The simulations for this case study showed that the concentrated mass only influences
the natural frequency, while its influence on the mode shape is very small and cannot
be seen visually. However, the trends of MLFs are related to the mode shapes. Thus,
in order to establish relationship between the influence of the concentrated mass on the
natural frequencies and the mode shapes, the corresponding mode shapes of the double
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beam without a concentrated mass are presented together with the MLFs as shown in
Fig. 4. As can be seen from Figs. 4(a), 4(b), 4(c), 4(d), the first two natural frequencies
decrease gradually as the concentrated mass is moved from the two ends to the middle
of the double-beam where the amplitudes of the first two mode shapes are largest. Mean-
while, the third frequency decreases gradually from the fixed ends as the mass is moved
to the positions of about 2.2 m and 7.8 m where the amplitude of the third mode shape
is largest as illustrated in Figs. 4(e), 4(f). The third natural frequency increases when the
mass is moved from these two positions to the middle of the beam where the amplitude
of the third mode shape is zero which is known as the node of the mode shape.
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Fig. 4. The first three mode shapes and MLFs

From these results, it is concluded that the influence of the concentrated mass is
large when the mass is located at the large amplitude position of the mode shape and
vice versa. The MLFs have local minima when the concentrated mass is located at the
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largest amplitude positions of the mode shapes. While, the MLFs have local maxima
when the concentrated mass is located at the nodes of the mode shapes.

3.3. Influence of the concentrated mass on the natural frequencies of the cracked double-
beam and its application for crack detection using wavelet transform

As discussed in the above section, the natural frequencies of the double-beam
change when there is a concentrated mass. The changes in natural frequencies caused
by the concentrated mass depend on the location of mass. Moreover, as can be found
from the literature, when there is a crack, the natural frequencies of a beam change and
the changes in natural frequencies depend on the position of the crack. Therefore, it is
expected that when the concentrated mass and the crack are located close together there
might be irregular changes in the natural frequencies. However, numerical simulations
have shown that the irregular changes in the natural frequency caused by the crack and
concentrated mass is small and difficult to be inspected visually. As an example, Fig. 5
presents the MLFs of the first three natural frequencies of the simply supported double
beam having two cracks in the main beam with depths of 40% of the main beam height
located at positions 3 m and 6.5 m. Obviously, no irregular change can be observed visu-
ally from this figure.

0 0.2 0.4 0.6 0.8 1
18

18.5

19

19.5

F
re

q
u
e
n
c
y
 (

H
z
)

Mass position (x/L)

(a) MLF of the 1st natural frequency

0 0.2 0.4 0.6 0.8 1
41

42

43

44

F
re

q
u
e
n
c
y
 (

H
z
)

Mass position (x/L)

(b) MLF of the 2nd natural frequency

0 0.2 0.4 0.6 0.8 1
72

74

76

78

F
re

q
u
e
n
c
y
 (

H
z
)

Mass position (x/L)

(c) MLF of the 3rd natural frequency

Fig. 5. MLFs of the cracked double simply supported beam with the crack depth of 40%
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In order to reveal the irregular change in the MLFs at the crack positions, the dif-
ference df between the MLFs of the first frequency of the double beam with and without
cracks are calculated by subtracting the MLF of the cracked double beam to the MLF of
the intact double beam. Fig. 6 presents the difference df between the MLF of the intact
double beam and the cracked double beam with different levels of the crack depth. As
can be seen from this figure, there are two sharp changes in the graph of df when the
crack depth ranges from 5% to 40%. This result may be useful for crack detection: the
crack location can be detected by the positions of the irregular changes in the graph of df.
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However, the MLF of an intact double beam as a baseline data is not always avail-
able in practice. Therefore, in order to inspect the irregular changes in the MLF caused by
the concentrated mass and cracks, the wavelet transform can be used since the wavelet
transform uses small wavelike functions which have local properties that are useful to
analyse the hidden details or irregular changes contained in signals. In this study, the
base line data is assumed to be unknown. Thus, the investigation of irregular changes in
the MLFs using wavelet transform will be applied and presented as follows.
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Fig. 7. Wavelet transform of the MLF of the first natural frequency
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The wavelet transform is defined as follows [27]

W(a, b) =
1√
a

+∞∫
−∞

f (t)ψ∗
(

t− b
a

)
dt, (22)

where a is a real number called scale or dilation, b is a real number called position, W(a, b)
are wavelet coefficients at scale a and position b, f (t) is input signal, ψ

(
t−b

a

)
is wavelet

function and ψ∗
(

t−b
a

)
is complex conjugate of ψ

(
t−b

a

)
.

Let us apply the wavelet transform for the MLF of the first natural frequency of the
double-beam having two cracks located arbitrary in the main beam. In this simulation,
the two cracks with an identical depth are assumed to be located at 0.3 m and 0.65 m. Six
levels of the crack depth from 0% to 40% of the main beam height are applied.

Fig. 7 shows the wavelet transforms of the MLF of the first natural frequency with
different crack depth levels. As can be seen from Fig. 7(a), when there is no crack there is
no significant peak in the wavelet transform. However, when there are two small cracks
with depth of 5%, there are significant peaks in the wavelet transform at positions of 3
m and 6.5 m which are the locations of the cracks as presented in Fig. 7(b). When the
crack depth increases from 10% to 40%, the values of these peaks increase significantly as
illustrated in Figs. 7(c), 7(d), 7(e), 7(f). These results imply that when there are cracks, the
first frequency changes sharply when the concentrated mass is located at the positions
of the cracks. This can be useful for crack detection: the crack locations can be detected
by the locations of the significant peaks in the wavelet transform of the MLF of the first
natural frequency.

4. CONCLUSION

In this paper, the influence of a concentrated mass on the natural frequencies of
a double-beam consisting of two different simply supported beams is presented. When
there is a concentrated mass the natural frequencies of the double-beam change. The
changes in natural frequencies depend on the location of the mass and the mode shapes
of the double-beam. These natural frequencies decrease gradually as the mass is moved
from the nodes of the corresponding mode shapes at which the amplitude of the mode
shapes are zero to the positions where the amplitudes of the corresponding mode shapes
are largest.

The natural frequencies change sharply when the concentrated mass is located
close to the crack positions. The sharp changes in natural frequencies can be detected
by significant peaks in the wavelet transform of the MLFs. This can be useful for crack
detection: the crack locations can be determined by the locations of the significant peaks
in the wavelet transform of MLFs. However, the MLF of the first natural frequency can
be applied efficiently for crack detection while the MLFs of higher natural frequencies
are not recommended.

The proposed method for crack detection can be applied for detecting cracks with
depths as small as 5%.
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