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Abstract. Many effective medium approximations for effective conductivity are elabo-
rated for matrix composites made from isotropic continuous matrix and isotropic inclu-
sions associated with simple shapes such as circles or spheres, . . . In this paper, we focus
specially on the effective conductivity of the isotropic composites containing the disor-
derly oriented anisotropic inclusions. We aim to replace those inhomogeneities by simple
equivalent circular (spherical) isotropic inclusions with modified conductivities. Available
simple approximations for the equivalent circular (spherical)-inclusion media then can
be used to estimate the effective conductivity of the original composite. The equivalent-
inclusion approach agrees well with numerical extended finite elements results.

Keywords: Isotropic multicomponent material, disorderly oriented anisotropic inclusions,
effective conductivity, matrix composite, equivalent inclusion.

1. INTRODUCTION

Theoretical determination of effective properties of multicomponent materials gen-
erally is difficult because of their complex microstructure and the random distribution of
inclusions. The most rigorous approach is to to construct upper and lower bounds on
the possible values of the effective properties, [1–3]. The bounds containing the proper-
ties and volume fractions of the component materials are not very useful in the case of
high contrast of matrix-inclusion properties. The numerical methods [4–9], such as finite
element one, fast Fourier transformation may give better results. However, they require
much computer resources and computational time when the microstructure is complex
and the inclusions are close to each other.

Engineers would prefer more simple effective medium approximations developed
over years from the most simple arithmetic and harmonic volume-weighted averages to
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more advanced self-consistent, differential, Mori-Tanaka approximation, correlation ap-
proximation. . . [10–17], which often account just for the shapes of the inhomogeneities
and the matrix-inclusion interactions. Many approximations are actually applicable for
only the composites with isotropic inclusions of simple shapes. The main objective here
is to construct a novel approach for macroscopically isotropic composites containing the
disorderly oriented anisotropic inclusions, which substitutes those inhomogeneities by
circular (spherical) isotropic inclusions with equivalent conductivity. Above approxima-
tions then can be used to estimate the conductivity of original media. The layout of this
paper is as follows.

First, we present the details of the proposed approach in section 2. In section 3, the
effective medium approximation for effective conductivity of macroscopically isotropic
composites containing the disorderly oriented anisotropic inclusions are compared with
extended finite element results for some composites with complex microstructure, in-
cluding that associated with random geometry. The conclusion completes the paper.

2. THE EQUIVALENT-INCLUSION APPROACH

Let us consider a d-dimensional macroscopically isotropic medium associated with
anisotropic particles of certain shapes. The effective conductivity of a dilute suspension
of those randomly-oriented particles having principal conductivities cI1, cI2, . . . , cId and
volume proportion vI in a matrix of conductivity cM has the form

ce f f = cM
[
1 + vI D (cI1, . . . , cId, cM) + O

(
vI

2)] . (1)

In the meantime, the dilute suspension of circular (spherical) particles having con-
ductivity c̄I and volume proportion vI in the matrix of the same conductivity cM has the
particular expression

ce f f = cM

[
1 + vI

2(c̄I − cM)

[c̄I + (d− 1)cM]

]
. (2)

Equalizing (1) and (2), one finds

c̄I = cM
D (cI1, . . . , cId, cM) (d− 1) + 2

2− D (cI1, . . . , cId, cM)
. (3)

In the special case the anisotropic inclusions have the circular (spherical) shape, (1)
has the particular expression [18]

ce f f = cM

[
1 + vI

d

∑
i=1

(
cIi − cM

cIi + (d− 1)cM

)]
, vI � 1 . (4)

In that case

D (cI1, . . . , cId, cM) =
d

∑
i=1

(
cIi − cM

cIi + (d− 1)cM

)
. (5)

c̄I is referred to as the conductivity of the equivalent circular (spherical) inclusion
for the original inclusions of conductivity cI .



Equivalent-inclusion approach for the conductivity of isotropic matrix composites with anisotropic inclusions 241

The simplest approximation for the conductivity of matrix circular (spherical)-
inclusion composites is the Maxwell one [17,19], which will be used in applications with
c̄I taking the place of cI .

3. NUMERICAL EXAMPLES FOR EFFECTIVE CONDUCTIVITY

3.1. Basic of XFEM/Level-set method
In this section, we use the Maxwell Approximation (MA) and eXtended Finite El-

ements method (XFEM) to estimate the conductivity of the isotropic composite contain-
ing the disorderly oriented anisotropic inclusions. Introducing equivalent inclusion with
conductivity c̄I defined in (3) instead of cI in the polarization formula [16], which is sim-
ilar to Maxwell one, one finds

ce f f = P(cM), (6)

where

P(c0) =

[
vM

cM + c0
+

vI

2

(
1

cI1 + c0
+

1
cI2 + c0

)]−1

− c0 . (7)

For numerical computations, the extended finite elements method [20–24] will be
used. In this framework, the level-set function is involved to describe the interface of
inclusions. The essence of this method is to enrich the finite element approximation with
additional functions to model interfaces or singularities independently of the background
mesh. So the XFEM does not require a mesh conforming with all internal surfaces of
inclusions as the finite element mesh.

Consider a domain Ω ⊂ RD with boundary ∂Ω (D being the dimension of the do-
main) which is partitioned into finite elements, and S ⊂ N∗ (N∗ being the set of positive
natural numbers) be a set of N nodes indices in the mesh. The XFEM temperature field
approximation can be expressed by

Th (x) = ∑
i∈S

Ni(x)Ti + ∑
j∈S e

N∗j (x)ψ(x)aj . (8)

In the above equation, Ti and aj are nodal unknowns, Ni(x) and N∗j (x) are finite
element shape functions, not necessarily the same. The nodal set S e is defined as:

S e =
{

j|j ∈ S , ωj ∩ Γ 6= ∅
}

, (9)

where Γ is an interface, that does not necessarily coincide with the mesh. ωi = supp(ni)
is the support of the nodal shape function Ni, which consists of the union of all elements
connected to the node ni. The function ψ(x) is an enrichment function with the desirable
discontinuous properties. In this work, the enrichment function ψ(x) can be chosen in
the form proposed by Moës et al. [20]

ψ (x) = ∑
i
|φi|Ni (x)−

∣∣∣∣∣∑i
φiNi (x)

∣∣∣∣∣ . (10)

where φ (x) is level-set function [20,23].
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The field equations of thermo-static problem are given by

∇ · q(x)− r(x) = 0 in Ω, (11)

q(x) = −C(x)∇T(x). (12)
Above, q(x) denotes the heat flux, r(x) is a heat source term and c(x) the conduc-

tivity tensor. The periodic boundary conditions are: q.n is antiperiodic on ∂Ω, and T is
periodic on ∂Ω. (C) is the conductivity matrix. More precisely, C(x) = CI for anisotropic
inclusions is defined as

CI = −RTC∗R, (13)
where C∗ is conductivity matrix in local coordinate system (1,2), which reads as

C∗I =

[
cI1 0
0 cI2

]
, (14)

and R is rotation matrix expressed by

R =

[
cos θ − sin θ
sin θ cos θ

]
(15)

The weak form associated with Eqs. (11)-(12) is given by finding T ∈ D = {T|T =
T̄ on ∂ΩT, T in H1(Ω)} such that∫

Ω

q∇ (δT) dΩ +
∫
Ω

rδTdΩ = 0, (16)

where H1
0(Ω) = {δT|δT ∈ H1(Ω), δT = 0 on ∂ΩT}.

By substituting the temperature field defined in (8) into the weak form (16) we
obtain the discrete system of linear ordinary equations

Kd = Q, d = {T a}T , (17)

where d are nodal unknowns and K and Q are the global stiffness matrix and external
flux, respectively. More precisely, the matrix K and vector Q are defined by

K =
∫
Ω

BTC(x)BdΩ, Q =
∫

Ω
NTrdΩ, (18)

where B and N are the matrices of shape function derivatives and shape functions asso-
ciated with the approximation scheme (8).

The periodic boundary condition is finally introduced to (17) by mean of multipli-
cator Lagrange.

3.2. Numerical example
As a numerical example we consider the two-component 2D square-periodic sus-

pension of anisotropic inclusions having conductivity cI1 and cI2 in a matrix of conductiv-
ity cM (Fig. 1(a)) (the principal axis is shown in the figure, secondary axis is perpendicular
to the principal one), which have macroscopically isotropic conductivity ce f f . For the next
model, we consider the hexagonal-periodic suspension with position of inclusions being
located same as in Fig. 1(b). The local coordinate system (1,2) makes an angle θ with
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the global coordinate system (x, y) of the square cell. In the random model (Fig. 1(c)), the
position of inclusions is generated with non-penetration algorithm; The radii of the inclu-
sions vary from 0.035L to 0.08L, L being the dimension of the square cell. The equivalent
configuration is that with circular (spherical) inclusions of the same centers and same vol-
umes as the original one, but with different isotropic conductivity c̄I . The regular mesh

(a) The square cell (b) The hexagonal cell

(c) The random cell

Fig. 1. The periodic cells of disorderly anisotropic inclusions having circular shape

(a) The square cell (b) The hexagonal cell

Fig. 2. The regular mesh of the configuration
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of the configuration is illustrated in Fig. 2. The level-set function for elliptic inclusions is
defined by

φ (x) = min
k=1,...,nc

(√
(x− xck)2 + (y− yck)2 − rk

)
, (19)

where (xck, yck) being the centers of inclusions, rk are radius of circular (spherical) inclu-
sions; nc being number of inclusions. The level set function φ (x) and the enrichment
function ψ(x) defined in Eq. (10) are illustrated in Fig. 3.

(a) (b)

Fig. 3. (a) Level-Set functions of elliptic inclusions; (b) Enrichment function
corresponding to above level-set functions

For numerical calculations, we take the material parameters given in Tab. 1.

Table 1. Material parameters for numerical calculations

(a) cM = 7 cI1 = 1 cI2 = 21 c̄I = 5.44
(b) cM = 1 cI1 = 7 cI2 = 21 c̄I = 10.73
(c) cM = 21 cI1 = 1 cI2 = 7 c̄I = 3.64

The equivalent circular (spherical) inclusion has the conductivity c̄I according to (3). The
obtained effective conductivity is shown in the Fig. 4, FEM and Equiv, corresponding
to the finite element results for original and equivalent configuration, are compared with
Maxwell approximation using equivalent inclusion (MA), Hashin-Shtrikman bounds
(HSU-Upper bound; HSL-Lower bound). The numerical results lie between the bounds.
Both Equiv and MA are close to exact FEM, but MA is less close, as expected (because
MAE is a double approximation). The approximations become less accurate at higher
volume fractions of the inclusion phases, as expected, because of interactions between
the inclusions that no simple approximations can cover. Still, the approximation appears
relatively at small to intermediate values of volume proportions of the inclusions. For the
hexagonal microstructure, we also take the material parameters given in the table , and
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Fig. 4. The graphics of the effective conductivity for square cell. (a) CM = 1; CI1 = 7; CI2 = 21;
(b) CM = 7; CI1 = 1; CI2 = 21; (c) CM = 21; CI1 = 1; CI2 = 7

b)a)

c)

0 0.2 0.4 0.6 0.8
2

4

6

8

10

12

14

16

18

FEM

Equiv

MA

HSU

HSL

0 0.2 0.4 0.6 0.8
3

4

5

6

7

8

FEM

Equiv

MA

HSU

HSL

0 0.2 0.4 0.6 0.8
1

2

3

4

5

6

7
FEM

Equiv

MA

HSU

HSL

c
e
ff

vI

c
e
ff

vI

c
e
ff

vI

Fig. 5. The graphics of the effective conductivity for hexagonal cell. (a) CM = 1; CI1 = 7;
CI2 = 21; (b) CM = 7; CI1 = 1; CI2 = 21; (c) CM = 21; CI1 = 1; CI2 = 7
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Fig. 6. Graphics of the effective conductivity with random cell. CM = 7; CI1 = 1; CI2 = 21

get the results presented in Fig. 5. The differences seem to be larger because of agglomer-
ation of the inclusion particles. For the random model with high complexity, the results
presented in the Fig. 6 indicate that the numerical equivalent-inclusions result (Equiv)
and Maxwell approximation (MA) almost coincide, and both are close to FEM results for
original composites.

4. CONCLUSION

The main idea here is to replace the original composite with disorderly-oriented-
anisotropic circular (or spherical) inclusion by the equivalent isotropic circular (or spher-
ical) inclusions composite, to which much more simple approximations can be applied
to estimate the effective conductivity. The proposed approach is based on equalizing
the dilute solution results for the original anisotropic inclusions and that for the circular
isotropic inclusions of the same volume fractions, but with some equivalent conductiv-
ity. It permits to substitute the original composite by an equivalent composite contain-
ing only circular (or spherical) inclusions. Then available effective medium schemas for
circular (or spherical) inclusion composites, such as the Maxwell one can be applied to
the equivalent medium. The numerical example have demonstrated the robustness, ef-
ficiency and accuracy of the approach. Clearly the approach can be extended also for
macroscopically isotropic composites with anisotropic inclusions of non-circular (non-
spherical) forms.

ACKNOWLEDGEMENT

This research is funded by Vietnam National Foundation for Science and Technol-
ogy Development (NAFOSTED) under grant number 107.02-2014.08



Equivalent-inclusion approach for the conductivity of isotropic matrix composites with anisotropic inclusions 247

REFERENCES

[1] D. C. Pham. Bounds for the effective conductivity and elastic moduli of fully-disordered mul-
ticomponent materials. Archive for Rational Mechanics and Analysis, 127, (2), (1994), pp. 191–
198. doi:10.1007/bf00377661.

[2] D. C. Pham. Bounds for the effective properties of isotropic composite and poly-crystals. PhD thesis,
Hanoi, (1996).

[3] N. Phan-Thien and D. C. Pham. Differential multiphase models for polydispersed spheroidal
inclusions: thermal conductivity and effective viscosity. International Journal of Engineering
Science, 38, (1), (2000), pp. 73–88. doi:10.1016/s0020-7225(99)00016-6.

[4] C. F. Dunant, B. Bary, A. B. Giorla, C. Péniguel, J. Sanahuja, C. Toulemonde, A.-B. Tran,
F. Willot, and J. Yvonnet. A critical comparison of several numerical methods for computing
effective properties of highly heterogeneous materials. Advances in Engineering Software, 58,
(2013), pp. 1–12. doi:10.1016/j.advengsoft.2012.12.002.

[5] B. Bary, M. B. Haha, E. Adam, and P. Montarnal. Numerical and analytical effective elastic
properties of degraded cement pastes. Cement and Concrete Research, 39, (10), (2009), pp. 902–
912. doi:10.1016/j.cemconres.2009.06.012.

[6] A. B. Tran, J. Yvonnet, Q.-C. He, C. Toulemonde, and J. Sanahuja. A multiple level set ap-
proach to prevent numerical artefacts in complex microstructures with nearby inclusions
within XFEM. International Journal for Numerical Methods in Engineering, 85, (11), (2011),
pp. 1436–1459. doi:10.1002/nme.3025.

[7] H. Moulinec and P. Suquet. A fast numerical method for computing the linear and nonlin-
ear mechanical properties of composites. Comptes Rendus De L’académie Des Sciences. Série Ii,
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