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Abstract. In this paper, the beam elements using higher-order terms for large deflection 
analysis of elastic frames are discussed. The elements based on the co-rotational method are 
derived using the strain energy and effective strains. The arc-length method is employed as 
numerical algorithm to compute the equilibrium paths. A number of numerical examples 
are studied to verify and compare the developed formulations. The obtained results show 
that while the inclusion of second-order local rotation contributes to some improvement in 
the accuracy, the higher-order axial strain hardly improves the numerical results. With the 
employment of the higher-order term elements, the accuracy in numerical analysis may be 
attained at coarser meshes. 

1. Introduction 

The co-rotational method is an efficient tool in development of nonlinear ele­
ments for structural analysis . The method, which employed an element attac~ed 
coordinate system, results in simple expressions for the local tangent stiffness ma­
trix and internal force vector. By eliminating the rigid rotation and translation from 
the formulations in the local system, the co-rotational method may allow employing 
simple definition of local strain, and the element based on linear definition of local 
strain has been developed [1]. The inclusion of higher-order terms may lead to more 
accurate elements, but faces some difficulties such as a large amount of calculation 
may be required . However, recent work shows that the symbolic computational 
softwares such as Mathematica or Maple can be used as very efficient tools in devel­
oping complex elements for nonlinear analysis [2] . Highlighted by the research, the 
present work develops higher-order beam elements based on Bernoulli's assumptions 
for large deflection analysis of elastic frames by using the co-rotational method and 
with the aid of Maple. A computer code based on the constructing formulations and 
the arc-length method is developed and employed to analyze various frames . The 
numerical results are used to verify the elements and compare to the one previously 
developed using linear definition for the local strain. 
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2. Strain employment 

In the context of finite element method, the most suitable strain for large de­
flection problems is the Green's measure [3] , and for a 2D beam element based on 
Bernoulli's assumptions in the (x, z) system, the Green's strain is written by 

Ex = Exo + ZK, =du+ ~(du)2 + ~(dw)2 - zd2w 
dx 2 dx 2 dx dx2 

(2.1) 

where u, w are axial and lateral displacements, respectively; Exo is the strain of 
the fiber on the neutral axis; K, = - d2w / dx2 is the curvature. By omitting some 
higher-order terms in the expression for Exo in (2.1), the two simplified theories are 
obtained 

. . du 
engmeermg: Exo = dx; du 1 (dw)2 shallow arch: Exo = -d + - - . 

x 2 dx 

Using the co-rotational method, the simplified theories can be employed for local 
strain definition to develop finite elements, but more accurate element is expected 
by using the Green's strain or the shallow arch theory. However, when interpolating 
the displacement field inside the element from the nodal degrees of freedom ( d.o.f), 
we cannot use lower-order functions for w than the cubic such as the Hermitian for­
mulas, while linear functions are often adopted for u . This unbalance interpolation 
scheme leads to the locking element which is not able to analyze the bending prob­
lems [4, 5]. Strictly speaking, as seen in (2.1), we can adopt quintic functions for u 
so that a balance with cubic functions for w is achieved, but such an interpolation 
scheme would be extremely cumbersome. A number of techniques can be applied to 
remove the locking problem [6, 7], and in this study an effective strain used in [7] 
to ensure a constant membrane strain is employed herewith 

L L 

1 J 1 J [du 1 (du)2 1 (dw)2] 
Eef = L Exodx = L dx + 2 dx + 2 dx dx (2.2) 

0 0 

with L is the element length. The effective strain (2 .2) is used in place of the 
strain Exo in (2.1) to develop the finite element formulations in the below. The 
formulations corresponding to shallow arch theory are directly obtained by omitting 

(
du)2 the term concerning dx in (2.2). 

3. Co-rotational method and beam kinematics 

The co-rotational method for developing nonlinear elements has been discussed 
in [7, 8] in various ways, but for completeness the main points of the method for 
constructing beam elements discussed in [1] are summarized herewith. 
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Fig. 1. Beam kinematics in global and local coordinate systems 

Two coordinate systems, as shown in the Fig. 1, are employed in the method, 
the fixed global (X, Z) and the moving local (x, z). The local system is chosen as 
well as its original is placed at node 1, and the axis x is directed from node 1 to 
node 2. The vector of nodal d.o.f in the global and local systems respectively are 
d = { ui wi Bi u2 w2 B2}r, dL = { uL BLi BL2}T. The relationship between local and 
global d .o.f is given by 

(3.1) 

where Land Ln are the initial and current lengths of the element 

L = y'(x2 - xi)2 + (z2 - zi)2 

Ln = y'(x2 - Xi+ u2 - ui) 2 + (z2 - Zi + W2 - wi) 2 (3.2) 

with (xi, zi) and (x2, z2) are the initial coordinates of nodes 1 and 2; a is the rigid 
rotation, expressed through the global d.o.f by 

[ 
(x2 - xi)(w2 - wi) - (z2 - zi)(u2 - ui) J 

a= arctg · 
(x2 - x1)(x2 - X1 + u2 - u1) + (z2 - z1)(z2 - z1 + W2 - wi) 

(3.3) 

Using the co-rotational method, the internal force vector and tangent stiffness 
method of the element are firstly constructed in the local system and then trans­
ferred to the global one. The internal force vector is derived by differentiating the 
strain energy U (the same in the two systems) with respect to the global nodal d.o.f 
as [7] 

au au adL r 
fi = ad = 8dL 8d = A 1 f Li' (3.4) 

where fi ={Ni Qi Mi N2 Q2 M2}T and fLi ={NL MLi ML2}T are the global and 
local internal force vectors, respectively; Ai is the matrix transformation, computed 
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from (3.1) as 

A1 = [A1ij] = [{)dLil · 
3x6 odj 

(3 .5) 

Having the internal force vector computed, the tangent stiffness matrix is obtained 
by differentiating the internal force vector (3.4) with respect to the global nodal 
d.o.f as 

ari r arLi a2uL a2eLl a2eL2 
6~t6 = {)d =Al {)dL A1 +NL ()d2 + ML1 8d2 + ML2 8d2 

= Af kLtA1 + NLA2 + ML1 A3 + ML2 A4, (3 .6) 

where kLt is the local tangent stiffness matrix; A 2 , A 3 , A 4 are the transformation 
3x3 

matrices, again computed from (3.1) as 

(3.7) 

Using the equations (3.4)-(3.7), the remain work for obtaining the finite element 
formulations is to construct the internal force vector and tangent stiffness matrix in 
the local system. 

4. Local formulations 

As mentioned in the previous section, the internal force vector can be computed 
from the strain energy, and for our bending problem of Bernoulli beam, the strain 
energy is given by 

L 

U = ~ J (EAc;0 +EI ,.})dx, (4.1) 

0 

where EA, EI are axial and bending rigidities. To express the strain energy U in 
terms of the local nodal d .o.f we need to interpolate the displacement fields, arid 
the linear function for u and Hermitian ones for w are again employed herewith. 
Keeping in mind that uLl = WLi = WL2 = 0 and U£2 is now denoted by U£, the 
displacement fields u and w are interpolated through the local d .o.f by 

( 
2x2 x 3 ) ( x2 x 3 .) 

w = x - - + - eL1 + - - + - eL2· L £ 2 L £2 
(4.2) 

Substituting (4.1) into in (2 .2) , the effective strain is written by 

( 4.3) 
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Fro,m (4.2) and (4.3), with the note that Eef is now used in place of Exo, the strain 
energy ( 4.1) is given by 

_ L (uL . u'i eii eL1eL2 ei2) 2 2 ( 2 2 ) u - 2 EA £ + 2L2 + 15 - 30 + 15 + LEI eL1 + eLleL2 + eL2 . 

(4.4) 

The local internal forces are now obtained. by differentiating the strain energy ( 4.4) 
with respect to the local d.o.f 

N = EA(1 UL) (UL u'i BL - eLleL2 B'i2) 
L + L L + 2L2 + 15 30 + 15 ' 

L . (UL u'i B'ii eLleL2 B'i2) 2 
ML1 = 30 EA(4eLl - eL2) £ + 

2
L2 + 

15 
-

30 
+ 

15 
+ L EI(WL1 + eL2), 

(4.5) 

L (UL u'i e11 eL1BL2 B'i2) 2 
ML2 = 

30
EA(-eLl + 4BL2) £ + 

2
L2 + 

15 
-

30 
+ 15 + L EI(wLl + eL2). 

The coefficients of the local tangent stiffness matrix are computed by differentiating 
the local internal forces ( 4.5) or twice differentiating the strain energy ( 4.4) with 
respect to the local d.o.f 

k (l 1) = ~EA[(1 UL)2 (UL. uJ, BL - 0Ll0L2 012)] 
Lt ' L + L + L + 2L2 + 15 30 + 15 

kLt(l, 2) = 
3

1

0
EA(1 + 11) (40Ll - OL2) 

. kLt(l , 3) _:_ 
3
1
0

EA(1+7)(-eLl+4BL2) 

L [ 1 2 (UL u'i e11 eLleL2 e12)] kLt(2 , 2) = 
30 

EA 
30 

(4BL1 - eL2) + 4 £ + 
2
L2 + 

15 
-

30 
+ 

15 
4 

+LEI (4.6) 

- L [ 1 2 (UL u'i e11 eLleL2 e12 )] kLt(3, 3) = 
30

EA 
30 

(-eL1 + 4BL2) + 4 £ + 
2
L2 + 

15 
-

30 
+ 

15 
4 

+LEI 

k (2 3) = !:_EA[(4BL1 - eL2)(4BL2 - eLI) _ (uL + ·u'i + B'ii _ eL1BL2 + e12)] 
Lt ' 30 . 30 L 2L2 15 30 15 

2 
+LEI 

kLt(2 , 1) = kLt(l , 3); kLt(3, 1) = kLt(l, 3); kLt(3 , 2) = kLt(2 , 3). 

The expressiondor the local internal forces and tangent stiffness matrix seem com­
plex, but they are easily obtained with the aid of symbolic software Maple [9], and 
the Maple code for deriving the equations ( 4.3)-( 4.6) is given in the Appendix. 
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The formulations for the element using shallow arch theory are directly obtained 
by omitting the terms containing uJ, in the equation (4.3) , that is in the expression 
for the effective strain in the Appendix. Combining with (3.4)-(3.7), the equations 
( 4.5) and ( 4.6) are enough for computing internal force vector and tangent stiffness 
matrix at the global system. 

5. Numerical algorithm 

The obtained formulations at the element level are assembled into structural 
internal force vector Fin and tangent stiffness matrix Kt to construct the equilibrium 
equations, which can be written in the form 

(5 .1) 

where R is the out of balance force vector between the vectors of internal forces Fin 
and external forces F ex; D - the vector of structural nodal d.o.f; ,\ is the loading 
parameter, and fex - the fixed normalized external force vector . The equation ( 5·.1) 
can be solved by the incremental iterative technique based on Newton-Raphson 
method, in which an iterative displacements are computed as b"D = -Kt"1 R . To 
trace complete equilibrium paths, the arc-length method [7, 8] is employed, and 
(5 .1) is supplemented by a constraint equation 

(5.2) 

where i0..D is the incremental displacements, accumulated from the iterative dis­
placements JD ; i0..L is the known value; 'ljJ is the parameter. Figure 2 shows how to 
compute a new point (D , ,\fex) from the current equilibrium point (Do, >..ofex) by us­
ing the constraint equation (5.2) . For the sake of simplicity, the figure is illustrated 
for the two-dimensional case of load-displacement space. 

Load 
(Do, A.of ex) -present point t..D= L: oDi 

Do D Displacement 

Fig . 2. Solution method for tracing equilibrium paths 

The total displacements D are updated from the increment displacements i0..D 
for every iteration, and the out of balance force vector R(D, ,\) is then recomputed 
by equation (5.1). This iterative process is terminated when a convergence criterion 
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is satisfied , and in the present study the criterion based on load-control technique 
is employed as 

(5.3) 

where f3 is a small constant , called tolerance. The value of ~L in (5.2) is first given 
as input data, and then automatically is computed for the next increment by the 
automatic increment method adopted from [10]. A value for the maximum iteration 
number is set out as input data, and if the convergence is not achieved within this 
value, the iterative process is stopped, and 6.L is reduced by haft . 

6. Numerical examples 

The obtained formulations and discussed algorithm are implemented into a com­
pute code using MATLAB [11]. Two developed elements, the Green element (GE) 
using strain defined by (2.2), and the other using the shallow arch theory (SE), have 
been used to analyze problems in Figure 3. It is noted that the units of measurement 
of some problems in the figure have been converted to the SI system from their 
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L 

Fig. 3. Test problems for verifying the elements 
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original sources.· The engineering element (EE) developed in [1] , is also employed 
for the purpose of comparison. The first two problems are chosen to verify and 
compare the elements since their analytical solutions are available. The remain 
problems are employed to test the ability of the elements as well as the developed 
computer code in handling the complex behavior of the structures and in working 
with more practical structures. The geometry and material data for each problem 
are given in the figure . A tolerance (3 = 10- 4 is used in all the analyses. 

The elastica. The elastica of the Euler beam with analytical solution given in [12] 
is one of the classical examples to test the nonlinear elements. This example analyzes 
the behaviour of the Euler beam in Figure 3a, where "(F is a small perturbation. 
Figure 4a shows the computed load-deflection curves at the middle point of the 
beam using 4 and 8 EEs and GEs, where Fer denoted the critical load. To compare 
the elements , an enlargement of the post-buckling part of the curves is shown in 
the Figure 4b. The SE was also used in the analysis but its results are not shown 
in the figures due to they are too close to those obtained by GE. The EE element 
which is constructed by omitting the higher-order terms exhibits some softer in the 
large deflection behavior of the beam, and this tendency is more clear in the coarse 
mesh (4 elements) . Using 8 elements, both EE and GE are good in describing post­
buckling behavior of the beam, but with the note that the line (-w / L = 0.4) is the 
tangent of the analytical solution [12], the GE is much more accurate in comparison 
with EE. The analysis was also carried out with various values of "( , but no much 
difference on the sensitivity to the perturbation of the elements has been observed. 
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0.4 
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Fig. 4. Load-deflection curves of Euler beam analyzed by 

different type and number of elements; "( = 0. 002 

0.5 

Toggle frame. For the case n = 1, the toggle frame shown in Figure 3b has been 
analytically studied by Williams [13] and numerically by various authors [14, 15]. 
The computed load-deflection curves of the frame are shown in Figure 5a for the 
case n = 1, and in Figure 5b for the case n = 0.5 and n = 1.2. Five elements for 
each beam have been used in the analyses . The GE is exhibited more accurate, and 
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the EE is again softer comparing to its counterpart. The curves computed by SE 
are not shown in the figure either, since they are also too close to the ones obtained 
by GE. 
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Fig . 5. Load-deflection curves of toggle frame analyzed by various elements 

A symmetric frame. The asymmetric frame in Figure 3c was numerically analyzed 
in [15, 16] , and it shows snap-through and snap-back characteristics. T his example 
is employed to verify the ability of the computer code in handling those complex 
characteristics of the structure. The load-deflection curves of the frame computed 
by using five GEs for each beam are given in Figure 6a. Very good agrement with 
the result in [16] was obtained. It is necessary to note that some difficulties in 
convergence were observed at the regions around points A and B in Figure 6a, and 
~L in these regions has been reduced to about one fifth of its input value. The 
deformed configurations of the discrete frame at various load levels (not computed 
in the previous works) are shown in Figure 6b. 
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Fig . 6. Load-deflection curves of asymmetric frame (a), 
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Portal and two-bay two-storey frames. The portable frame shown in Figure 
3d having geometry and material data taken from [15], and the two-bay two-storey 
frame shown in Figure 3e as an extension of the portable frame are used to verify 
the computer code in working with more practical structures. Figures 7a and 7b 
respectively show the load-displacement curves of the structures with various values 
of n . A good agrement with the results in [15] was seen, at leats with the horizontal 
displacement up to 200 cm. The values of the horizontal displacement beyond 200 
cm is not reported in [15]. 

40 
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15 
(a) (b) 

100 200 300 100 200 
Horizontal displacement at point A (cm) Horizontal displacement at point A (cm) 

Fig. 7. Load-displacement curves of portable frame (a), 
and two-bay two-storey frame (b) 

7. Conclusions 
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The present work described the finite element formulations and numerical algo­
rithm for geometrically nonlinear analysis of elastic frames. The elements employing 
higher-order terms show better accurate comparing with the one using the engineer­
ing strain . The developed formulations have complex forms , but could be derived 
and handled without difficulties by using the symbolic software Maple. 

Five examples have been employed to verify and demonstrate the accuracy and 
efficiency of the developed elements and computer code. The two developed ele­
ments , GE and SE show almost no difference in the numerical results. The difference 
between the high-order term elements and the engineering element was observed at 
the large displacement regions , and the tendency is more clear in the coarse mesh. 

8. Appendix 
# Maple code for internal forces and tangent stiffness matrix 
restart ; with(linalg) ; 
Nu: = x/ L; Nwl:= x-2*x A 2/ L+ x A3/L/ L; Nw2:=-xA2/L+x A3/ L/ L; 
Nux: = diff(Nu,x); Nwl x: = diff(Nwl ,x) ; Nw2x: = diff(Nw2 ,x) 
Nwlxx: = diff(Nwlx,x) ; Nw2xx:= diff(Nw2x,x) 
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# effective strain and curvature, omit "l/2*(Nux*uL)'2" term for SE element 
Eef:= l / L*int (Nux*uL+ 1/ 2*(Nux*uL) '2 +(Nwlx*thetaLl +Nw2x*thetaL2) ' 2, x=O ... L); 
Eef: =simplify(Eef); 
kappa:=-(Nwlxx*thetaLl+ Nw2xx*thetaL2); 
# the strain energy 
Ul:=l/2*int(EA *Eef'2, x=O ... L); U2 :=1 / 2*int(EI*kappa' 2, x=O .. . L); U:=Ul+U2; 
# the internal forces and stiffness matrix 
±Li: =grad(U, [ uL, thetaLl , thetaL2]); 
KLt:=hessian(U, [uL, thetaLl, thetaL2]); 
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BANG PHAN Tu Hfru H~N CHUA cAc THUA so BAc CAO 

Bai baa trl.nh bay cong thuc phan ta hfru h9-n s& d\lng cac thl.ra s6 b;%c cao cho 
phan tich khung dan hoi co de) vong l&n. Cac phan ti} dtrqc xay d\fng tren CCY sa 
phtrang phap h~ t9a de) dong hanh va bieu thuc nang lm;mg bien d9-ng. Dm:mg can 
bang ket cau dtrqc~tfnh theo phm:mg phap de) dai cung. Cac vi d\l so chi ra rang 
trong khi thi'ra so b~c hai cD.a g6c quay d!a phuang cAf thi~n phan nao d9 chinh xac, 
ket qua s6 hau nhtr khong thay doi v&i S\f tham gia clia bien d9-ng d9c tr\lc b;%c cao. 
Phan tfch s& d\lng phan ti} chua so h9-ng b~ cao c6 the d9-t duqc d9 chinh xac v&i 
ltr&i tho han. 
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CAN BANG MAY QUAY TRONG TRUONG HQP PHI TUYEN 

KHI QUA VUNG CQNG HUONG 

Nguyen Cao M~nh, Tran Duong Tr{ 
(Tiep trang 242) 

Bai bao nay trl.nh bay m<)t phuang phap can bang d(mg may quay duqc mo ta 
nhu h~ phi tuyen khi qua vung c<)ng huang. Sau khi thiet 1;%p h~ dao d<)ng phi 
tuyen, cac lai giru so (h~ tuyen tinh , phi tuyen) , cac phan tfch dao d(mg duqc de 
xuat. Dva tren cac ket qua phan tich, m<)t quy trl.nh can bang d<)ng qua vung c<)ng 
huang bao gom do dao d<)ng, xi} ly tin hi~u va xac d!nh cac tham so de tinh toan 
d9 l&n va v! tri khoi luqng mat can -bang 
da duqc trl.nh bay. Cac thi d\l ve mo hinh va tinh toan da duqc thvc hi~n de minh 
h<?a cho phuang phap. 
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