THE POINCARÉ METHOD FOR
A STRONGLY NONLINEAR DUFFING OSCILLATOR

NGUYEN VAN DINH
Institute of Mechanics

It is well-known that the classical Poincaré method is limited to weakly non­
linear systems and for extending the range of validity of this method to strongly
non-linear systems, various modifications have been developed.

Some authors have replaced the original parameter ε by a new α; the later is
chosen such that the values α are always kept small regardless of the magnitude
of ε. High degree of accuracy have been obtained. For instance in [2], for an
undamped Duffing oscillator having large cubic non-linearity the free oscillation
period evaluated by the “α method” in the fourth approximation (solution to 0(α⁵))
is identical with that given by the exact solution, even for large εα² (= 1000).

In the present article, the mentioned Duffing oscillator is examined by another
modified Poincaré method. Practically acceptable results are obtained.

§1. System under consideration. Period from the exact solution.

Consider an oscillator governed by the differential equation

\[\ddot{x} + x + \varepsilon x^3 = 0, \quad (1.1) \]

where \(x \) is an oscillatory variable; overdots denote differentiation with respect to
time \(t \); \(\varepsilon \) is the cubic non-linearity coefficient which is assumed to be positive and
arbitrary (\(\varepsilon \) needs not to be small)

The attention is focused on the period of free oscillation satisfying initial condi­
tions

\[x(0) = a, \quad \dot{x}(0) = 0. \quad (1.2) \]

The exact period is given by the formulae

\[T_{ex} = \frac{4}{\sqrt{1 + \varepsilon a^2}} \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - m \sin^2 \theta}}, \quad m = \frac{\varepsilon a^2}{2(1 + \varepsilon a^2)} \quad (1.3) \]

and the value \(T_{ex} \) as function of \(\varepsilon a^2 \) was given in [2] (see the second column of the table)
§2. Period from the standard Poincaré method

For the sake of comparison, the standard Poincaré method [1] is used first for the case of small ϵ.

Let ω be the frequency to be evaluated. Introducing the new time $\tau = \omega t$, the equation (1.1) can be written as:

$$\omega^2 x'' + x + \epsilon x^3 = 0,$$ \hspace{1cm} (2.1)

where primes denote differentiation with respect to τ. According to the standard Poincaré method, both unknowns x and ω are expanded in powers of ϵ, that is:

$$x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + \ldots$$ \hspace{1cm} (2.2)

$$\omega = 1 + \epsilon \omega_1 + \epsilon^2 \omega_2 + \ldots$$ \hspace{1cm} (2.3)

and the initial conditions are replaced by the following ones

$$x_0(0) = a, \quad x'_0(0) = 0,$$ \hspace{1cm} (2.4)

$$x_i(0) = 0, \quad x'_i(0) = 0.$$ \hspace{1cm} (2.5)

Substituting the expansions (2.2) and (2.3) into the equation (2.1) then equating coefficients of like powers of ϵ yield a set of equation

$$x_0'' + x_0 = 0,$$ \hspace{1cm} (2.6)

$$x_1'' + x_1 = -2 \omega_1 x_0'' - \epsilon x_0^3,$$ \hspace{1cm} (2.7)

$$x_2'' + x_2 = -2 \omega_1 x_1'' - (\omega_1^2 + 2 \omega_2) x_0'' - 3 x_0^2 x_1.$$ \hspace{1cm} (2.8)

The general solution of the equation (2.6) satisfying the initial conditions (2.4) is

$$x_0 = a \cos \tau.$$ \hspace{1cm} (2.9)

Using (2.9), the equation (2.7) can be written in detailed form:

$$x_1'' + x_1 = 2 \omega_1 a \cos \tau - \epsilon a^3 \cos^3 \tau$$

$$= (2 \omega_1 - \frac{3}{4} a^2) a \cos \tau - \frac{a^3}{4} \cos 3 \tau.$$ \hspace{1cm} (2.10)

To eliminate the secular term, ω_1 should be taken as

$$\omega_1 = \frac{3a^2}{8}.$$ \hspace{1cm} (2.11)

Then the solution x_1 satisfying the initial conditions (2.5) is

$$x_1 = \frac{a^3}{32} (\cos 3 \tau - \cos \tau).$$ \hspace{1cm} (2.12)
Going on this perturbation procedure, with regard to (2.9) - (1.12), we rewrite the equation (2.8) as:

\[x''_2 + x_2 = \left(2\omega_2 + \frac{21a^4}{128}\right)\cos\tau + \frac{3a^5}{16}\cos 3\tau - \frac{3a^5}{128}\cos 5\tau. \tag{2.13} \]

Eliminating the secular term gives:

\[\omega_2 = -\frac{21a^4}{256}. \tag{2.14} \]

The solution \(x_2 \) satisfying the initial conditions (2.5) is

\[x_2 = \frac{3a^5}{128}(\cos\tau - \cos 3\tau) + \frac{3a^5}{3072}(\cos 5\tau - \cos\tau). \tag{2.15} \]

Hence, respectively for the frequency \(\omega \), the period \(T \) and the solution \(x \), we obtain
- in the first approximation

\[
\begin{align*}
\omega^{(1)} &= 1 + \frac{3}{8}\varepsilon a^2, \\
T_1 &= \frac{2\pi}{\omega^{(1)}} = \frac{2\pi}{1 + \frac{3}{8}\varepsilon a^2}, \\
x^{(1)} &= a\cos\tau + \frac{\varepsilon a^3}{32} (\cos 3\tau - \cos\tau).
\end{align*}
\tag{2.16}
\tag{2.17}
\tag{2.18}
\]

- in the second approximation

\[
\begin{align*}
\omega^{(2)} &= 1 + \frac{3}{8}\varepsilon a^2 - \frac{21}{256}\varepsilon^2 a^4, \\
T_2 &= \frac{2\pi}{\omega^{(2)}} = \frac{2\pi}{1 + \frac{3}{8}\varepsilon a^2 - \frac{21}{256}\varepsilon^2 a^4}, \\
x^{(2)} &= a\cos\tau + \frac{\varepsilon a^3}{32} (\cos 3\tau - \cos\tau) + \frac{3\varepsilon^2 a^5}{128} (\cos\tau - \cos 3\tau) \\
&\quad + \frac{3\varepsilon^2 a^5}{3072} (\cos 5\tau - \cos\tau).
\end{align*}
\tag{2.19}
\tag{2.20}
\tag{2.21}
\]

The values of \(T_1, T_2 \) as functions of \(\varepsilon a^2 \) are shown below in the third and fourth columns of the table.

We see that the results obtained from the standard Poincaré method can be used only for \(\varepsilon a^2 < 1 \) and the second approximation is more accurate than the first one. For large \(\varepsilon a^2 \ (>1) \), the value of \(T_1 \) is no longer acceptable and that of \(T_2 \) becomes “irration”.

21
§3. Period from a modified Poincaré method

In this section, a modified Poincaré method is proposed. Assuming that the strongly non-linear Duffing oscillator is near to certain weakly non-linear one with unknown frequency \(\omega \), we rearrange the governing differential equation (1.1) as

\[
\ddot{x} + \omega^2 x = \mu \{(\omega^2 - 1)x - \varepsilon x^3\},
\]

where \(\mu \) is a formal parameter which is assumed to be small (\(\varepsilon \) plays now the role of an "ordinary" parameter).

The left hand side \((\ddot{x} + \omega^2 x)\) represents a linear oscillator associated with the original strongly non-linear one; the right hand side \(\{(\omega^2 - 1)x - \varepsilon x^3\}\) represents weak perturbations which consists of the linear perturbation \((\omega^2 - 1)x\) and the cubic ones \((-\varepsilon x^3)\).

As in the standard Poincaré method, the new time \(T = \omega t \) is introduced and the equation (3.1) is rewritten as

\[
\omega^2 (\ddot{x} + x) = \mu \{(\omega^2 - 1)x - \varepsilon x^3\}.
\]

Then, both unknowns \(x \) and \(\omega \) are expanded in powers of \(\mu \), that is

\[
x = x_0 + \mu x_1 + \mu^2 x_2 + \ldots
\]

\[
\omega = \omega_0 + \mu \omega_1 + \mu^2 \omega_2 + \ldots,
\]

where \(\omega_0 \) is the "initial approximation" of the unknown frequency. Substituting the expansions (3.3), (3.4) into the equation (3.2) then equating coefficients of like powers of \(\mu \) yield

\[
\omega_0^2 (x_0'' + x_0) = 0,
\]

\[
\omega_0^2 (x_1'' + x_1) = (\omega_0^2 - 1)x_0 - \varepsilon x_0^3,
\]

\[
\omega_0^2 (x_2'' + x_2) = -2\omega_0 \omega_1 (x_1'' + x_1) + (\omega_0^2 - 1)x_1 + 2\omega_0 \omega_1 x_0 - 3\varepsilon x_0^2 x_1,
\]

\[
\ldots \ldots \ldots \ldots \ldots \ldots \ldots
\]

The general solution of the equation (3.5), satisfying the initial conditions (2.4) is

\[
x_0 = a \cos \tau.
\]

Using (3.8), the equation (3.6) becomes

\[
\omega_0^2 (x_1'' + x_1) = \left[(\omega_0^2 - 1) - \frac{3}{4} \varepsilon a^2 \right] a \cos \tau - \frac{\varepsilon a^3}{4} \cos 3\tau.
\]

To eliminate the secular term, \(\omega_0^2 \) should be taken as

\[
\omega_0^2 = 1 + \frac{3}{4} \varepsilon a^2.
\]
Then, the solution \(x_1 \) satisfying the initial conditions (2.5) is:

\[
x_1 = \frac{\varepsilon a^3}{32\omega_0^3} (\cos 3\tau - \cos \tau).
\]

(3.11)

With regard to (3.8), (3.10), (3.11), we rewrite the equation (3.7) in the form

\[
\omega_0^2 (x_2'' + x_2) = (2\omega_0\omega_1 + \frac{3\varepsilon^2 a^4}{128\omega_0^2}) a \cos \tau + \frac{\omega_1 \varepsilon a^3}{2\omega_0} \cos 3\tau - \frac{3\varepsilon^2 a^5}{128\omega_0^2} \cos 5\tau.
\]

(3.12)

Eliminating the secular term gives:

\[
\omega_1 = \frac{3\varepsilon^2 a^4}{256\omega_0^3}
\]

(3.13)

and the equation for determining \(x_2 \) takes the form:

\[
\omega_0^2 (x_2'' + x_2) = -\frac{3\varepsilon^3 a^4}{512\omega_0^4} \cos 3\tau - \frac{3\varepsilon^2 a^5}{128\omega_0^2} \cos 5\tau.
\]

(3.14)

The solution \(x_2 \) satisfying the initial conditions (2.5) is:

\[
x_2 = \frac{3\varepsilon^3 a^7}{4096\omega_0^6} (\cos 3\tau - \cos \tau) + \frac{3\varepsilon^2 a^5}{3072\omega_0^4} (\cos 5\tau - \cos \tau).
\]

(3.15)

Hence, the expansions of the frequency \(\omega \), the period \(T \) and the solution \(x \) are respectively

- in the first approximation

\[
\omega^{(1)} = \omega_0 = \sqrt{1 + \frac{3}{4}a^2},
\]

(3.16)

\[
T^{(1)} = \frac{2\pi}{\omega_0} = \frac{2\pi}{\sqrt{1 + \frac{3}{4}a^2}},
\]

(3.17)

\[
x^{(1)} = a \cos \tau + \frac{\varepsilon a^3}{32\omega_0^3} (\cos 3\tau - \cos \tau).
\]

(3.18)

- in the second approximation

\[
\omega^{(2)} = \omega_0 + \omega_1 = \sqrt{1 + \frac{3}{4}a^2 - \frac{3\varepsilon^2 a^4}{256\omega_0^3}},
\]

(3.19)

\[
T^{(2)} = \frac{2\pi}{\omega_0 + \omega_1} = \frac{2\pi}{\sqrt{1 + \frac{3}{4}a^2 - \frac{3\varepsilon^2 a^4}{256\omega_0^3}}},
\]

(3.20)

\[
x^{(2)} = a \cos \tau + \frac{\varepsilon a^3}{32\omega_0^3} (\cos 3\tau - \cos \tau) + \frac{3\varepsilon^3 a^7}{4096\omega_0^6} (\cos 3\tau - \cos \tau)
\]

\[
+ \frac{3\varepsilon^2 a^5}{3072\omega_0^4} (\cos 5\tau - \cos \tau).
\]

(3.21)
The formulas in the third approximation are enough complicated

\[
\begin{align*}
\omega^{(3)} &= \omega_0 + \omega_1 + \omega_2 = \sqrt{1 + \frac{3}{4} \varepsilon a^2 - \frac{3 \varepsilon a^4}{256 \omega_0^2} - \frac{45 \varepsilon^4 a^8}{131.072 \omega_0^2}}, \\
T^{(3)} &= \frac{2\pi}{\sqrt{1 + \frac{3}{4} \varepsilon a^2 - \frac{3 \varepsilon^3 a^4}{256 \omega_0^2} - \frac{45 \varepsilon^4 a^8}{131.072 \omega_0^2}}}, \\
x^{(3)} &= \left(\frac{9 \varepsilon^5 a^{11}}{262.144 \omega_0^4} - \frac{3 \varepsilon^3 a^7}{16.384 \omega_0^2} \right) (\cos 3\tau - \cos \tau) + \frac{9 \varepsilon^4 a^9}{196.608 \omega_0^2} (\cos 5\tau - \cos \tau) \\
&+ \frac{9 \varepsilon^3 a^7}{294.912 \omega_0^2} (\cos 7\tau - \cos \tau).
\end{align*}
\]

The values of \(T^{(1)} \), \(T^{(2)} \), \(T^{(3)} \) are shown in the fifth, sixth and seventh columns of the table.

We see that the results obtained from the method proposed are fully acceptable even for large values of \(\varepsilon a^2 \).

For \(\varepsilon a^2 = 1000 \), the relative errors of \(T^{(1)} \), \(T^{(2)} \), \(T^{(3)} \) are respectively of orders 0.022, 0.0008, 0.00008

<table>
<thead>
<tr>
<th>(\varepsilon a^2)</th>
<th>(T_{ex})</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T^{(1)})</th>
<th>(T^{(2)})</th>
<th>(T^{(3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>6.28319</td>
<td>6.28319</td>
<td>6.18319</td>
<td>6.28319</td>
<td>6.28319</td>
<td>6.28319</td>
</tr>
<tr>
<td>0.01</td>
<td>6.25976</td>
<td>6.25976</td>
<td>6.25976</td>
<td>6.25976</td>
<td>6.25976</td>
<td>6.25976</td>
</tr>
<tr>
<td>0.1</td>
<td>6.06066</td>
<td>6.05608</td>
<td>6.06087</td>
<td>6.06004</td>
<td>6.06066</td>
<td>6.06066</td>
</tr>
<tr>
<td>1.0</td>
<td>4.76802</td>
<td>4.65959</td>
<td>4.85950</td>
<td>4.74964</td>
<td>4.76789</td>
<td>4.76802</td>
</tr>
<tr>
<td>4.</td>
<td>3.17971</td>
<td>2.51327</td>
<td>5.29110</td>
<td>3.14159</td>
<td>3.17884</td>
<td>3.17975</td>
</tr>
<tr>
<td>10.</td>
<td>2.19179</td>
<td>1.32278</td>
<td>-1.81956</td>
<td>2.15511</td>
<td>2.19065</td>
<td>2.19187</td>
</tr>
<tr>
<td>40.</td>
<td>1.15182</td>
<td>0.39270</td>
<td>-0.05452</td>
<td>1.12849</td>
<td>1.15095</td>
<td>1.15190</td>
</tr>
<tr>
<td>100.</td>
<td>0.73626</td>
<td>0.16320</td>
<td>-0.00004</td>
<td>0.72073</td>
<td>0.73566</td>
<td>0.73632</td>
</tr>
<tr>
<td>1000.</td>
<td>0.23434</td>
<td>0.01671</td>
<td>-0.00008</td>
<td>0.22928</td>
<td>0.23414</td>
<td>0.23436</td>
</tr>
</tbody>
</table>

Conclusions

A modified Poincaré method is proposed. It consists in introducing a formal parameter in order to separate “weak perturbations” from the “associated linear oscillator” (the one which is near as possible of the strongly non-linear oscillator). Applying to an undamped Duffing oscillator having large cubic non-linearity, free oscillation periods computed are in good agreement with those obtained from the exact solution.
Numerical computations in the present paper are performed by D. Tran Duong Tri.

This publication is completed with financial support from The Council for Natural Science of Vietnam.

REFERENCES

Received September 10, 2001
in revised form October 3, 2002

PHƯƠNG PHÁP POINCARÉ CHO CHÂN TỬ DUFFING PHI TUYẾN MẠNH