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Abstract. Particular expressions of upper and lower estimates for the macroscopic elastic
bulk modulus of random cell tetragonal polycrystalline materials are derived and com-
puted for a number of practical crystals. The cell-shape-unspecified bounds, based on
minimum energy principles and generalized polarization trial fields, appear close to the
simple bounds for specific spherical cell polycrystals.
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1. INTRODUCTION

Macroscopic (effective) elastic moduli of polycrystalline materials depend on the
elastic constants of the base crystal and aggregates” microstructure, which is often of ran-
dom and irregular nature. The first simple estimations for the effective moduli are Voigt
arithmetic average and Reuss harmonic average. Using minimum energy and compli-
mentary energy principles and constant strain and stress trial fields, respectively, Hill [1]
established that Voigt and Reuss averages are upper and lower bounds on the possible
values of the effective elastic moduli of orientation-unpreferable polycrystalline aggre-
gates. Assuming that the shape and crystalline orientations of the grains within a random
polycrystalline aggregates are uncorrelated and using their own variational principles,
Hashin and Shtrikman [2] derived the respective second order bounds for the moduli
that are significantly tighter than the first order Voigt-Reuss-Hill bounds. Using Hashin-
Shtrikman-type polarization trial fields, but comming directly from classical minimum
energy principles, Pham [3-6] succeeded in constructing partly third order bounds on
elastic moduli of random cell polycrystals, which fall strictly inside the second order
Hashin-Shtrikman bounds. More general polarization trial fields have been used to de-
rive even tighter bounds (still being partly third order ones, though) in [7], which are
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specified to the cubic crystals’ case. In this work we resume the approaches and derive
the explicit expressions of the estimates for the effective bulk modulus of tetragonal poly-
crystals, with particular numerical results for a number of materials.

2. MINIMUM ENERGY PRINCIPLES AND THE BOUNDS

Consider a representative volume element V of a polycrystalline aggregate that
consists of N components occupying regions V, C V of equal volumes v, = vg (x =
1,...,N ) - each component is composed of grains of the same crystalline orientation
with respective crystal elastic stiffness tensor C(x) = C*. A random cell polycrystal (see
Fig. 1) is supposed to be represented by such N-component configuration when N —
%, v, = vg = % — 0 with the crystalline orientations being distributed uniformly in all
directions in the space. The effective elastic tensor C%/f = T(K¢/f, u°/f) of the polycrystal
is defined via the minimum energy expression [3, 4]

e :CYf % = inf .s:C:sdx, (1)
(g)=¢&" J

or the minimum complementary energy expression

o0 (CNH1 0% = inf /0’ :C7L:odx, (2)
(o)=0" J

where the admissible (compatible) strain field £(x) in (1) is expressed through a displace-
ment field u(x) in V

1
£ = E[Vu +(Vu)T], 3)
while the stress field o (x) in (2) is equilibrated in V
V-oc=0, (4)

0

(-) means the volume average on V; &, ¢¥ are constant strain and stress fields; T(K, 1)

are isotropic fourth rank tensor function
2
Tiju (K, 1) = Kéijd + p(6ixdjt + 0indjr — §5ij5kl) : ®)

The strain and stress fields are related via the Hook law o (x) = C(x) : &(x).

U

7

Fig. 1. A random cell polycrystal
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In [7], the admissible multi-parameter kinematic and static polarization trial fields
more general than those in [3-6], which have contain only two free parameters, have
been chosen

N
eij(x) = %+ ) [ @lkj + W5 Pk + bag il (6)
a=1

for (1), and
N
0ij(x) = 08+ Y [ @k + TPl — (b4 1)6ja 9% — ai 1™ + bag ], @)
a=1

for (2), where 7% (x) equals to 1 if x € V,,, and to 0 if x ¢ V,; and we have introduced the
harmonic and biharmonic potentials

P*(x)=— [ & Ix—y|Tdy, 9*(x)=-[g&|x—yldy, ®8)
Va Vi

(V2 (x) = V¥ (x) = dup, Xx € Vp).
The free parameters af in Eqgs. (6) and (7) are subjected to restrictions (for (e;;) =
€%, (oij) = 0°y)
N
Zvaaf‘k:O, i,k=1,2,3. 9)
a=1

Substituting the trial fields (6) and (7) into the energy functionals of (1) and (2) , and
optimizing the respective energy functions over free parameters af, restricted by Eq. (9),
with the help of Lagrange multipliers, and then over b, one obtains the formal bounds on
Keff (7]

K4 > Kk > K, (10)
where

KY(C) = max minKY8(C, f, ¢1,b), 11
(C) ;max m (C, f1,81,b) (11)

KYf8 = ky + (Ckq : A;1>a : <A;1>;1 : <A;1 : Cku)a — (Cka : .A;l : Cku)a »

KL(C)= mi KLf8(C, f1, e1,b),
(C) £ min, | max (C, f1,81,b)

KLfg = (klzl + <CK¢X : :4[2;>“ : <¢_4;1>;1 : <A;1 : Ca>ac - <CK0< : A;1 : Cle>tx)_1/

the cell (grain) shape parameters f, g1 are restricted in the ranges

2 6 8 6 2 4
- > > = — > > = = - — = - — 12
32h20, Shtgzaizch, (h=3-h, &=z-8), (12)
Ky and K are Voigt and Reuss averages
1 _ _
Ky = §Ciijj , Kr=[(C Y], (13)

(-)« designates an average over all crystalline orientations «; the expressions of A, A,,
Cka, Cka, are given in Appendix A. The shape parameters fi, g1 defined in [4] contain
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three-point correlation information about the symmetric cell geometry of the random
polycrystal.

In the procedure briefly presented above, substitution of the trial field (6) [or (7)]
into the energy expressions (1) [or (2)] is rather involved, which required statistical sym-
metry and isotropy hypotheses for random cell polycrystals and much algebraic manip-
ulation [3,4,7]. Still, as one can see it directly, the resulted energy expression should
be a quadratic form for the free parameters af, which are restricted by (9). Hence, the
substituted energy expression can be optimized over the free parameters analytically by
the Lagrange multiplier method. The energy expression obtained still contain 3 parame-
ters, including the free one b and 2 geometric parameters fi, g1 characterizing polycrystal
microstructure and restricted by (12). The last optimization operation over these 3 pa-
rameters in (11) have to be made numerically for particular cases, as shall be done subse-
quently. The bounds will be specified for the random aggregate of tetragonal crystals in
the next section.

3. BOUNDS FOR TETRAGONAL CRYSTAL AGGREGATES

In the following, C;jx (i,j,k,1 = 1,2,3) are designated as the components of the
fourth-rank elastic stiffness tensor C in the base-crystal coordinates, and Cp; (p,q =
1,...,6) are the respective convenient Voigt’s two-index notations for the elastic con-
stants. In the case of tetragonal crystals (classes 4,4,4/m), there are 7 independent elas-
tic constants Cy1, C12, C13, C33, Cas, C16, Ces. The correspondence between the fourth-rank
elasticity tensor components in the base crystal reference C;j; and those in the two-index
notation is

Ci1 = Cin1 = Co22, C33 = Caazz, C12 = Cr122, Ci6 = Cr112 = —Con12, (14)

C13 = Cr133 = Ca233 , Cyq = C1313 = Co323, Co6 = Cr212,
while the other independent components are zero. The elastic compliance tensor S = C~!
is often given in the respective Voigt’s two-index notation S,; (p,g =1,...,6) as

S11 = S1111, S33 = S3333 , S12 = S1122, S16 = 251112, (15)
S13 = S1133 , Saa = 452323, Se6 = 451212 -

As such, the 6 x 6 matrix {5y} is really the inverse to the matrix {Cp,}, with par-
ticular relations between their components

{Spa} = {Cp} 1,

Su = 1[ Cx + Cos }
2 C33(C11 + Clz) — ZC%3 C66(C11 — C]z) — 2C%6 !
1 C C
512 = 7|: & > 6 2 i| ’ (16)
21Cx(C11 +Ci2) —2C3;  Ces(Cr1 — Cia) — 2G5
_ _C13 i C11 + C12
Si3 = >, Sz = 2
(C11 4 Ci12)Ca3 — 2C5;5 (C11 4 Ci12)Ca3 — 2C5;5
1 Cy1—C —C
Syu=—=—, Se6 = n_k S16 = 16

Cyq (Cr1 — C12)Cep — 2C3,° (C11 — C12)Ce6 — 2C3
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The Voigt and Reuss averages have the particular expressions

1
Ky = Kv({Cpq}) = §(2C11 +2C1p +4Ci3 +Cz3) , (17)
Kr = ICR({Spq}) = (2511 + 2515 + 4513 + 533)_1 .

Inverse (16) and functional (17) relations shall be used repeatedly afterwards.

Let the tensors Cg, Ay, Cky, Ay be given as Cg, A, Ck, A in the base crystal co-
ordinates. Since the crystalline orientations « are distributed equally over all directions
in the random polycrystalline material space, all the averages (-), in Egs. (11) are ten-
sor invariants, hence can be calculated in the base-crystal coordinates. For the upper
bound KY, we derive the following particular expressions of its constituent tensors as
two-index-notation matrices

Cx = {C{;}, (symmetric 3x3 matrix) , (18)
1 2b bK
Cﬁ = (C11+C12+C13)§(1+€)+?‘/ :ng, (19)

1. 2b.  bKy

Cl = (Ca3+2C13)=(1+ =) + ck=ck=ck=o,

9 5/ 5 7
A={Cp}, Cp.=Cr+Dp, (symmetric 6x6 matrices) , (20)
Cift = C11(B1 + B2) + (C11 + C12 + C13) (B3 + By) (21)

+(C11 + Cas + Ce6)(Bs + Bs) = C55,
Ci3 = C33(By + By) + (C33 4 2C13) (B3 + Bg) + (Csz +2Cys) (By + Bs),
C13 = C12B1 + Ce6Ba + (Ci1 + C1p + C13)Bs + (C1q + Cag + Ceg) By,

1
Ci4 = C13B1 + CayBa + (Ci1 + Cs3 + Cio + 3C13)§B3

1
+(C11 4+ C33 +3Cyy + C66)§B4 = C,
1 1
Cid = CyBy + (C3 + C44)§Bz + (Cy1 + C33 +3Caa + C66)ZLBS

1
+(C11 + Ci2+3Ci3 + C33)136 =Cig,

1 1
Cid = Ce6B1 + (Cro + C66)§B2 +(Cin+Ca + C66)§B5

1
+(Ci1 +Ci2 + C13)§B6 ,

Chd = —Cjg = —Ci6(B1 + B2),
D11 = Dyp = D33 = D1 + Dy, D1 = D13 = D3 = Dy,
1

D4y = Ds5 = Dee = EDz,
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where By, ..., Bg and Dy, D, are defined in Appendix A. Further, one finds the 6 x 6 sym-
metric matrix

A= {S g = {C o 1" Jaccording to relations (14)] . (22)
Then
Al Cy=Cx: A= {Cj?g} (3 x 3 symmetric matrix) , (23)
Ciin = (511 + S)CHy + S15C3 = Cidsa,
Citss = S5C3% +2515C1 ,  Cii = Ciiz = Ciys = 0,
and
Cx: A Cx = CRAC = 20K G + CKCis (24)
Now one has [isotropic tensor T is defined in Eq. (5), functionals K - in Eq. (17)]
1.
(A0 =T(GRR (S, ;MR USfD) - (25)
Hence
(AN = T(K({Sp 1), Mr({S7})) - 26)
Also
_ _ 1
(A Cra)a = (Cra t Ay e = 13(2CK11 +Ci%) (27)
I is the second rank unit tensor. Finally
KY8 = Ky + (2C£5 + Ci5)*Kr({Spy}) — CR1C . (28)

The upper bound KY is found from expression (28) and respective optimizing operation
in (11).
Similarly, for the lower bound K in (11), we find

K8 = [Kg' + ;(ZCKH + i) Ky ({Coph) — CRACTH, (29)
;’4‘7’ C?fgq’ CCAC
fined in Eq. (17). The lower bound K is found from expression (29) and respective opti-
mizing operation in (11).

For numerical calculations, we take the tetragonal crystals, elastic constants of
which are collected in [8]. The new shape-unspecified bounds KY, K- are compared with
the old bounds KY, KT of [5], and also with bounds for specific spherical cell polycrystals
KY, KL and pY, ul, where the shape parameters fi = ¢; = 0, in Tab. 1. In Tab. 2 the
respective values of b, f1, g1, where the optimal bounds are reached, are also reported. It
is interesting to observe that, in the case of spherical cell polycrystals, the new bounds
coincide with those obtained from our old approach [5], which have simple expressions.
The new shape-unspecified bounds are closer to the bounds for spherical cell polycrystals
compared to the old ones. Unfortunately, up to present, we can not find in the literature
any sufficiently-high-accurate experiments on the elastic moduli of random polycrystals,

where the expressions of C are given in Appendix B, functional Ky is de-
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Table 1. The new shape-unspecified bounds K*, KY on the effective bulk modulus
of some tetragonal crystal aggregates compared to the old bounds K%, KU,
and the bounds for spherical cell polycrystals K}, KY (all in GPa)

Crystal KL, | Kt Kt KY KY | KY,
C(CH3O0H), | 1523 | 1526 | 1541 | 1653 | 16.58 | 16.60
AgCIO; | 3531 | 3532 | 3532 | 3533 | 3533 | 3533
StMoO; | 69.86 | 69.86 | 69.86 | 69.88 | 69.88 | 69.88
CisHgOs | 4114 | 4126 | 4128 | 4.157 | 4.198 | 4.199
CaMoO; | 80.92 | 80.92 | 80.93 | 80.94 | 80.94 | 80.94

Table 2. bb, £, gk, bY, fU, ¢l - the values of the free (b) and shape (f},g1) parameters,
at which the respective extrema in the bounds on the effective bulk modulus
of the random polycrystals of Tab. 1 are reached

Crystal bt ft | st L I S I 54
C(CH30H), | -1.6020 | 2/3 | 0.5714 | -0.7875 0 0.2286
AgCIOs -1.6070 0 0.2286 | -0.7928 0 0
SrMoQOy -1.4143 | 2/3 | 0.5714 | -0.7086 0 0
CuHsO; | -08619 | 0 | 02286 | -05212 | 2/3 | 05714

CaMoQOy -1.3817 | 2/3 | 0.5714 | -0.7025 0 0

in which all experimental data points are collected, not just the rough average one - with
just 2 significant digits, for comparison with the bounds. Still, some data collected in [6]
seem to support the prediction of our bounds.

4. CONCLUSION

In this paper we have derived explicit expressions of the general shape-unspecified
upper and lower bounds on the effective elastic bulk modulus of random tetragonal crys-
tal aggregates with numerical illustrations. The estimates are expected to predict the scat-
ter range of the macroscopic elastic property of practical polycrystalline materials. One
can see that the much more general and flexible trial fields (compared to the old ones
of [5]) lead only to small improvements indicates again that we might close to the best
possible estimates. High-accuracy experiments and numerical simulations on random
polycrystals are expected to access the practical value of our theoretical results. Esti-
mates for the more-complex effective shear modulus of the tetragonal crystal aggregates
shall be the subject of our following study:.
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APPENDIX A

General formula for the tensors A,, A,, Ck., Ck, appeared in Egs. (11) of the
bounds on the effective bulk modulus of random cell polycrystals [7]

L, 2, bKvoy

Cxy = {CiI]('lX , clI]<,a = f}kkg(“rg) = (30)
A, =A,+D, A = {Al]k,}, D = {Dju}, (31)
, 1 1
i})'(kl = CijuB1 + 5 (Cik + Cjear) B2 + 5 (Cijppdia + Cayij) Bs
1
2 (Czp]pékl + Ckplp(sl])BA} + (C?pkp(sjl + C pkp(sll + C plp(szk + Clplp(s]k)
1
+ 7 (CikppOit + Cligppit + Cyp it + Ciryp0jic) Be
1 2b
By = §(1+ 5 Y+ AR +¢G1, Bo=fih+£Gy, By= fiFi+$1Gy,
2b  4b?
B3 = 5 + 75 + B +§Gs, Bs=fil+81Gs, Be= fiFs+g1Gs,
1
Dijit = 8ijéaD1 + 5 (0ixdjt + 0dje) D2,
D; = (Ky — *ﬂv)(stl +83G1) + uv(fsbh2 + 83Ga2) + 3Ky (f3F3 + §3G3)
+(K +—O )(fsFs + G)+%F+%G +b—21<
V3,”V 3F4 T 8304 375725\/,
1
Dy = 2uy(f3F1 +83G1) + (Kv + gyv)(stz + 23G2)
10 2 4
+(Ky + gﬂv)(sts + 83Gs) + 3Ky (faFe + §3Gs) + 3Fs+5Gs,
F__l_ib_]‘?’bZ (;_43192 _i+ib+16b2
1715 105 315’ ' 1890’ > 10 '35 ' 315’
4b? 4b 4b? b2
= :G = —_—— F:_i_i, G:_i’
G2 = Ga=Gs 1897 3 105 315 3 945
2b  16b> 1 4b  4b2 1062
EF,=F = Fs= — 4+ - — =
4=l = T35 5T 35 3157 57 189
4p? 4b? b2 5b2
F,=—-——K = — Ky— —
A TNy ARl IN A T
b2 1062 202 5b2
Fs= —Ky — —o K
5= 105KV~ g v Gs= g Kvt o
) _ 20 1 4 1
_ K ~Ka __ —1¢ (=Y -y .
Cra = {CS*}, Cf 5;';pp(15 §) — ,(15 + 3) ; (32)
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Aa = A,; +D, A,/X = {"Zl;?kl} , D= {Dijkl} , SY= (C'X)_l , (33)
-/ — 1 1
'Ai}?‘kl S?;’lel + E( 5{]1 + S]kzl)B2 +5 > (Szp]p(skl + Skplp(sl])B
1 1
+§(Sz]pp5kl + Sklppélj)B3 + 4( ;-xpkpéﬂ + S]pkp(sll + S]plpélk + Szplp(sjk)B
1 )
+Z( lkpp(sjl + S]kpp(sil + S}?Clpp(sik + Spr(Sjk)B6 ’
_ 1 _ _ _ _ _ _ _ _
B = §(1 — g)z + ik +8G, By=fih+§Gy, Bi=fils+§Gs,
2 4b  16D2 _ _ _ _ ) )
B3_§+E_ 5 + A +91Gs, Bs=fiFk+aGs, Be= fif+¢1Ge,
_ _ 1 _
Diju = 80 D1 + §(5ik5jl +6ixdi) D2,
= 1.4 1 4 = = [ = 1o 1/, =
D, = (§KR —gHR )(fsh1+8361) + ppp (faha +83G2) + 3Kr (fsF3 +83Gs)
1 5 _ 2. 4. 1 4b
“Ky' 4+ Zun Y (FE G “FE+ =G 1 2kt
+(9 R T gHR )(fsFs+ g3 4)+3 7+ 2 7+9( + 5) R
) 1 . 3 1. . 1 _ _ _
D, = (El’lRl(fl"Pl +¢3G1) + (§KR1 + EVRl)(ﬁFz +83G2)
1. . 5 _ _ 1 2. 4
+(§KR1 + g‘uRl)(f3F5 —|—g3G5) + gKRl(f3P6 +g3G6) + §F8 + gGg ,
F__i_lib_lez G_43b2 __g+@+16b2
1= 795 7105 315’ ' 1890’ * 5 '35 ' 315’
_ - _ 4p? _ 22h+28 212 - b?
Gr=G,=G¢=——, B="""0 2 Gy=——),
2T e 189~ ° 105 315 3 945
__@+16b2 F—g+@—4—b2 - lov* . 32b+28 8b*
735 " 315’ ° 5 '3 315 ° 189’ ‘° 35 457
2 3162 4+ 90b + 63 _ b? 5b2
F — -1 _ K_l — 7K—1 _ —1
77 g3Hr 945 R 67 = 550K~ Zeghr s
~ 136b% 4 324b + 189 502 . 4b* ., BV
By = = K3
8 945 R~ gl Gs = K’ T igghr
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APPENDIX B

For the lower bound K%, we have the following particular expressions of its con-
stituent two-index-notation matrices

Cx = {C_{j} (symmetric 3 x 3 matrix) , (34)

2b 1 1 4b 1
Cli = (511+512+513)(15 5)_K7R(E+§)/
2b 1 1 4b 1

Cy = (522+512+523)(15 —g) - ?R(ﬁ+§) ,

2b 1 1 4b 1 - _ _
Cy = (533+2513)(15 _5)_K7R(ﬁ+§)’ Ch=C=Cp=0;

A= {5_,’;\,7 , S_;‘q = S_;‘; + Dy (symmetric 6 x 6 matrices) , (35)
S = S11(By + By) + (S11 + S12 + S13) (Bs + Bs)
1 1
+(S11 + 1555 + 1566)(34 +Bs) =54,

_ _ _ _ _ 1 _ _
S = S33(By + By) + (S33 +2513) (B3 + Bs) + (S33 + 5544)(34 +Bs),

- _ 1 _ _ 1 1 _
818 = S12B1 4+ ~SesBz 4 (S11 + S12 + S13)Bs + (S11 + = Sas + +Se) Bs

4 4 4
_ _ 1 _ 1.
ié = S13B1 + 155532 + (S11+ S12 +3S13 + 533)533
3 1
+(511 + S33 + 1544 + 1566) By = 523 ,
_ _ 1 _ 3 1 _
Si4 = S4aBy 4 (Sa3 + 1544)232 + (S11+ S33 + 1544 + 1566)35

+(S11 + S12 + 3513 + S33)Bs = S_é’é ,
_ _ 1 _ 1 1 _
Si& = SeeB1 4 (S12 + 21566)2B2 + (2511 + =Sa4 + =Se6) Bs

2 2
+2(S11 + S12 + S13)Bs ,
D11 = Dy = D33 = D1 + Dy, D1y = D13 = D3 = Dy; Das = Dss = Deg = 2D,

(36)
where By, ..., Bg and Dl, D; are defined Appendix A.
= {C = {S o 1 (6 x 6 symmetric matrix) . (37)
Then
Al =Ck: A = {C_fg} (3 x 3 symmetric matrix) , (38)

Cifi = (Cfi + C1h)CY + CiCl = Cis,
Cis = CiCl +2C0ACY , CRh=Clz=Cip =0,
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_ _1 _ _ —_ _ _ -
Cx: A Cx = CYAC = 20K GRS + CKCLAG

(A Ne = T(Kv({S 1, My({C D))

(A7) =Ty (UCAD, ;M UCAD)

. a1y 1L peac .
(A Craa = (Cro s A o = I3 (2615 +C5) -

(39)

(40)

(41)

(42)
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