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Abstract. In this paper, the buckling and post-buckling behaviors of eccentrically stiff-
ened functionally graded material (ES-FGM) plates on elastic foundations subjected to
in-plane compressive loads or thermal loads are investigated by an analytical solution.
The novelty of this work is that FGM plates are reinforced by FGM stiffeners and the
temperature, stiffener, foundation are considered. The first-order shear deformation plate
theory is used. The thermal elements of plate and stiffeners in fundamental equations
are introduced. Theoretical formulations based on the smeared stiffeners technique and
the first-order shear deformation plate theory, are derived. The analytical expressions to
determine the static critical buckling load and post-buckling load-deflection curves are
obtained.

Keywords: Stiffened plates, nonlinear analysis, functionally graded material (FGM), ther-
mal environment, elastic foundation.

1. INTRODUCTION

Stiffened plates are structural components consisting of plates reinforced by a sys-
tem of stiffeners to enhance their load carrying capacities. Stiffened plates nowadays are
widely used in modern industry, such as ships, bridges, tank roofs, vehicles, etc. Many
researches have been published regarding stiffened plates. Analysis of linear buckling
of stiffened plates by the orthotropic plate method may be found in Timoshenko and
Gere [1]. The elastic buckling and post-buckling behavior of eccentrically stiffened plate
are evaluated analytically by Steen [2] using the simplified direct energy approach to-
gether with Marguerre’s plate theory. Influence of stiffener location on the stability of
stiffened plates under compression and in-plane bending is studied by Bedair [3].

For un-stiffened plates without foundation, many studies have been focused on the
buckling behavior analysis under mechanical and thermal loading. Reddy [4] presented
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the finite element formulation for linear and nonlinear thermo-mechanical bending re-
sponse of plates made up of functionally graded material (FGM) using higher order shear
deformation theory (HSDT). Lanhe [5] presented an analytical solution for the thermal
buckling of FGM rectangular simply supported plate subjected to uniform temperature
rise and gradient through the thickness of plate, using FSDT. The results on the nonlin-
ear analysis of stability for functionally graded un-stiffened plates under mechanical and
thermal loads using the classical plate theory (CPT) have been considered by Tung and
Duc [6]. Achchhe Lal et al. [7] examined the second order statistics of post-buckling re-
sponse of functionally graded materials plate subjected to mechanical and thermal load-
ing with nonuniform temperature changes subjected to temperature independent and
dependent material properties using HSDT with von-Karman nonlinear kinematic.

For plates resting on elastic foundations, many significant results on the buckling
and post-buckling are obtained. Duc and Tung [8] presents an analytical investigation
on the buckling and post-buckling behaviors of thick FGM un-stiffened plates resting on
elastic foundations under in-plane compressive, thermal and thermomechanical loads
based on HSDT taking into account Von Karman nonlinearity. Kiani and Eslami [9] stud-
ied analytically the buckling of heated functionally graded material annular plates on
Pasternak-type elastic foundation based on the CPT. Naderi et al. [10] presented an exact
analytical solution for buckling analysis of moderately thick functionally graded sector
plates resting on Winkler elastic foundation according to FSDT.

As can be seen that the above introduced works only relate to un-stiffened FGM
structures. Recently, Najafizadeh et al. [11] with the stability equation given in terms
of displacement investigated the mechanical buckling behavior of FGM stiffened cylin-
drical shells reinforced by rings and stringers based on the classical shell theory. The
stiffeners and skin are assumed to be made of FGM and its properties vary continuously
through the thickness. Bich et al. [12,13] investigated the nonlinear static buckling behav-
ior of eccentrically stiffened imperfect FGM plates and shallow shells and the nonlinear
dynamic response of eccentrically stiffened FGM imperfect panels and doubly curved
thin shallow shells on the basis of the classical plate and shell theory. Stiffeners in these
researches are assumed to be homogenous. The results on the static nonlinear buckling
and post-buckling analysis of eccentrically stiffened FGM circular cylindrical shells un-
der external pressure or torsional load are obtained Dung and Hoa [14, 15], whereas the
material properties of shell and stiffeners are assumed to be continuously graded in the
thickness direction. Dung and Nam [16] presented nonlinear dynamic analysis of ec-
centrically stiffened functionally graded circular cylindrical thin shells surrounded by an
elastic medium. Dung et al. [17] investigated the stability of functionally graded trun-
cated conical shells surrounded by an elastic medium. Shells are reinforced by stringers
and rings in which material properties of shell and stiffeners are graded in the thickness
direction according to a volume fraction power-law distribution.

Recently, Duc et. al. [18, 19] investigated the nonlinear post-buckling of imperfect
eccentrically stiffened thin FGM plates and FGM double curved thin shallow shells on
elastic foundation in thermal environments with temperature-dependent material prop-
erties based on the classical plate theory and the classical shell theory, respectively. Dung
and Hoa [20] presented the nonlinear buckling and post-buckling of functionally graded
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stiffened thin circular cylindrical shells under torsional load surrounded by elastic foun-
dations in thermal environments based on the classical shell theory. The elastic medium
in these articles is assumed as two-parameter elastic foundation model proposed by
Pasternak.

In this paper, the buckling and post-buckling behaviors of eccentrically stiffened
functionally graded material (ES-FGM) plates on elastic foundations subjected to in-
plane compressive loads or thermal loads are investigated by an analytical. We focus
on three highlights as follows:

- FGM plates are reinforced by FGM stiffeners.
- The thermal element of stiffeners in Nij, Mij is taken into account.
- The unknown functions φx and φy are chosen in the form of two terms, so we only

need to apply Galerkin method one time for one resulting equation.
Three kinds of loads, namely, in-plane compressive, thermal and thermomechan-

ical are considered. Theoretical formulations based on the smeared stiffeners technique
and the first-order shear deformation plate theory, are derived. The analytical expres-
sions to determine the static critical buckling load and analyze the post-buckling load-
deflection curves are obtained. The effects of thermal element, stiffeners, foundation,
geometrical and material parameters are shown.

2. THEORETICAL DERIVATIONS

2.1. Functionally graded materials
Consider an eccentrically stiffened functionally graded (ES-FGM) rectangular plate

of length a, width b, and uniform thickness h resting on elastic foundations shown in
Fig. 1. The plate is referred to Descartes coordinate system (x, y, z) in which the plane
Oxy coincides with the un-deformed middle surface of the plate and the axis 0z is in the
thickness direction (−h/2 ≤ z ≤ h/2). The functionally graded material of plates is
assumed to be varied continuously in the thickness direction and made from a mixture
of ceramic and metal with the volume-fractions given by a power-law distribution as

Vm + Vc = 1, Vc = Vc(z) =
(

z
h
+

1
2

)k

, (1)

where k ≥ 0 is the volume fraction exponent, and the subscripts m and c refer to the metal
and ceramic constituents, respectively.

Effective properties Pre f f of FGM plate are determined by linear rule of mixtures as

Pre f f = PrmVm(z) + PrcVc(z), (2)

where Prm, Prc are temperature-independent material properties of metal and ceramic
constituent, respectively.

According to the mentioned law, Young’s modulus, thermal expansion coefficient
and thermal conductivity coefficient of FGM plate are of the form
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E(z) = EmVm + EcVc = Em + (Ec − Em)

(
z
h
+

1
2

)k

,

α(z) = αmVm + αcVc = αm + (αc − αm)

(
z
h
+

1
2

)k

,

K(z) = KmVm + KcVc = Km + (Kc − Km)

(
z
h
+

1
2

)k

,

(3)

and Young’s moduli, thermal expansion coefficients of FGM stiffeners are given by

Esx(z) = Em + (Ec − Em)

(
−2z + h

2h1

)k2

,−h
2
− h1 ≤ z ≤ −h

2
,

Esy(z) = Em + (Ec − Em)

(
−2z + h

2h2

)k3

,−h
2
− h2 ≤ z ≤ −h

2
,

α1(z) = αm + (αc − αm)

(
−2z + h

2h1

)k2

,−h
2
− h1 ≤ z ≤ −h

2
,

α2(z) = αm + (αc − αm)

(
−2z + h

2h2

)k3

,−h
2
− h2 ≤ z ≤ −h

2
,

(4)

where k2 ≥ 0, k3 ≥ 0 are the volume fraction exponents; Esx(z), Esy(z) and α1(z), α2(z)
are Young’s moduli, and thermal expansion coefficients of x-direction and y-direction
stiffeners, respectively.

The Poisson’s ratio, in this work, is assumed to be a constant.

Fig. 1. Configuration of an eccentrically stiffened plate on elastic foundations
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2.2. Basic relations and governing equations
Denote u, v, w being the displacement components of the mid-plane of the plate in

x, y, z directions respectively, and φx, φy are the rotations of a transverse normal about the
y- and x-axes, respectively.

According to the first order shear deformation plate theory and geometrical nonlin-
earity in von Karman sense, the strain components across the plate thickness at a distance
z from the mid-plane are [5] εx

εy
γxy

 =

 ε0
x

ε0
y

γ0
xy

+ z

 κx
κy
κxy

 , (5)

[
γxz
γyz

]
=

[
γ0

xz
γ0

yz

]
=

[
w,x + φx
w,y + φy

]
, (6)

where  ε0
x

ε0
y

γ0
xy

 =

 u,x +
1
2 w2

,x
v,y +

1
2 w2

,y
u,y + v,x + w,xw,y

 ,

 κx
κy
κxy

 =

 φx,x
φy,y

φx,y + φy,x

 , (7)

in which εx, εy are normal strains, γxy is the in-plane shear strain and γxz, γyz are the
transverse shear deformations.

Using the relations (7), the geometric compatibility equation of plate is represented
in the form

ε0
x,yy + ε0

y,xx − γ0
xy,xy = w2

,xy − w,xxw,yy. (8)

The stress-strain relations taking into account the temperature for plate, are defined
by Hooke’s law as

(
σ

p
x , σ

p
y
)
=

E(z)
1− ν2

[(
εx, εy

)
+ ν

(
εy, εx

)]
− E(z)

1− ν
α(z)∆T (1, 1) , ∆T = T − T0,(

σ
p
xy, σ

p
xz, σ

p
yz
)
=

E(z)
2 (1 + ν)

(
γxy, γxz, γyz

)
,

(9)

and for stiffeners taking into account the temperature [21]

σs
x = Esx(z)εx − Esx(z)α1(z)∆T, σs

y = Esy(z)εy − Esy(z)α2(z)∆T,

σs
xz = Gsx(z)γxz, σs

yz = Gsy(z)γyz,
(10)

where the superscripts “p” and “s” denote plate and stiffener respectively; Gsx, Gsy are
shear moduli of x-direction and y-direction stiffeners, respectively.

Taking into account the contribution of stiffeners by the smeared stiffeners tech-
nique and omitting the twist of stiffeners and integrating the above stress-strain equa-
tions and their moments through the thickness of the plate, we obtain the expressions
for force, moment resultants and transverse shear force resultants of ES-FGM plate in
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thermal environment, as

Nx =

(
A11 +

E1sb1

d1

)
ε0

x + A12ε0
y + (B11 + C1) φx,x + B12φy,y − φm − φmx,

Ny = A12ε0
x +

(
A22 +

E1rb2

d2

)
ε0

y + B12φx,x + (B22 + C2) φy,y − φm − φmy,

Nxy = A66γ0
xy + B66

(
φx,y + φy,x

)
,

(11)

Mx = (B11 + C1) ε0
x + B12ε0

y +

(
D11 +

E3sb1

d1

)
φx,x + D12φy,y − φb − φbx,

My = B12ε0
x + (B22 + C2) ε0

y +

(
D22 +

E3rb2

d2

)
φy,y + D12φx,x − φb − φby,

Mxy = B66γ0
xy + D66

(
φx,y + φy,x

)
,

(12)

Qx = A44w,x + A44φx,
Qy = A55w,y + A55φy,

(13)

where the coefficients Aij, Bij, Dij and the expressions φm, φmx, φmy, φb, φbx, φby are defined
in Appendix I.

The relations (11) and (12) are the most significant contribution found in this work
in which the thermal elements in plate and stiffeners in equations of Nij and Mij are
considered.

The strain-force resultant relations are obtained reversely from Eq. (11)

ε0
x = A∗22Nx − A∗12Ny − B∗11φx,x − B∗12φy,y + (A∗22 − A∗12) φm + A∗22φmx − A∗12φmy,

ε0
y = A∗11Ny − A∗12Nx − B∗21φx,x − B∗22φy,y + (A∗11 − A∗12) φm + A∗11φmy − A∗12φmx,

γ0
xy = A∗66Nxy − B∗66

(
φx,y + φy,x

)
.

(14)

Substituting Eq. (14) into Eq. (12) yields

Mx =B∗11Nx+B∗21Ny+D∗11φx,x+D∗12φy,y+(B∗11+B∗21) φm+B∗11φmx+B∗21φmy−φb−φbx,

My =B∗12Nx+B∗22Ny+D∗21φx,x+D∗22φy,y+(B∗12+B∗22) φm+B∗12φmx+B∗22φmy−φb−φby,

Mxy = B∗66Nxy + D∗66
(
φx,y + φy,x

)
,

(15)

where the coefficients A∗ij, B∗ij and D∗ij are given in Appendix II.
The nonlinear equilibrium equations of a perfect FGM plate on elastic foundations

based on the first order shear deformation theory are [5, 22]

Nx,x + Nxy,y = 0, (16)

Nxy,x + Ny,y = 0, (17)

Qx,x + Qy,y + Nxw,xx + 2Nxyw,xy + Nyw,yy + q− K1w + K2
(
w,xx + w,yy

)
= 0, (18)

Mx,x + Mxy,y −Qx = 0, (19)
Mxy,x + My,y −Qy = 0, (20)

where q is an uniform transversal force, K1 (N/m3) is Winkler foundation modulus and
K2(N/m) is the shear layer foundation stiffness of Pasternak model.
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By putting

Nx = f,yy, Ny = f,xx, Nxy = − f,xy, (21)

it is easy to see that the first two equations (16) and (17) are automatically satisfied, and
three resting equations become

Mx,xx+2Mxy,xy+My,yy+ f,yyw,xx−2 f,xyw,xy+ f,xxw,yy+q−K1w+K2
(
w,xx+w,yy

)
=0,

Mx,x + Mxy,y −Qx = 0,
Mxy,x + My,y −Qy = 0.

(22)
Substituting the expressions of Mij from Eq. (15) and Qx, Qy from (13) into Eq. (22), we
obtain

B∗21
∂4 f
∂x4 + (B∗11 + B∗22 − 2B∗66)

∂4 f
∂x2∂y2 + B∗12

∂4 f
∂y4 + D∗11

∂3φx

∂x3 +

+ (D∗12 + 2D∗66)
∂3φy

∂x2∂y
+ (D∗21 + 2D∗66)

∂3φx

∂x∂y2 + D∗22
∂3φy

∂y3 +
∂2 f
∂y2

∂2w
∂x2 +

− 2
∂2 f

∂x∂y
∂2w
∂x∂y

+
∂2 f
∂x2

∂2w
∂y2 + q− K1w + K2

(
∂2w
∂x2 +

∂2w
∂y2

)
= 0,

(23)

B∗21
∂3 f
∂x3 +(B∗11−B∗66)

∂3 f
∂x∂y2 +D∗11

∂2φx

∂x2 +(D∗12+D∗66)
∂2φy

∂x∂y
+D∗66

∂2φx

∂y2 −A44
∂w
∂x
−A44φx =0,

(24)

B∗12
∂3 f
∂y3 +(B∗22−B∗66)

∂3 f
∂y∂x2 +D∗22

∂2φy

∂y2 +(D∗21+D∗66)
∂2φx

∂x∂y
+D∗66

∂2φy

∂x2 −A55
∂w
∂y
−A55φy =0.

(25)
The three coupled equations (23), (24) and (25) include four unknown functions w, φx, φy
and f so it is necessary to find a fourth equation relating to these functions by using the
compatibility equation (8). For this aim, substituting the expressions of Eq. (14) into Eq.
(8), one can write as

A∗11
∂4 f
∂x4 + (A∗66 − 2A∗12)

∂4 f
∂x2∂y2 + A∗22

∂4 f
∂y4 − B∗21

∂3φx

∂x3 − (B∗11 − B∗66)
∂3φx

∂x∂y2+

− (B∗22 − B∗66)
∂3φy

∂y∂x2 − B∗12
∂3φy

∂y3 −
(

∂2w
∂x∂y

)2

+
∂2w
∂x2

∂2w
∂y2 = 0.

(26)

For initial imperfect ES-FGM plates: The initial imperfection of the plate considered
here can be seen as a small deviation of the plate middle surface from the perfect shape
and assume that it is very small compared with the thickness of the plate. Let w∗ =
w∗(x, y) is a known function representing initial imperfection of the plate. Two equations
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(23) and (26) are modified into form as

B∗21
∂4 f
∂x4 + (B∗11 + B∗22 − 2B∗66)

∂4 f
∂x2∂y2 + B∗12

∂4 f
∂y4 + D∗11

∂3φx

∂x3 + (D∗12 + 2D∗66)
∂3φy

∂x2∂y

+ (D∗21 + 2D∗66)
∂3φx

∂x∂y2 + D∗22
∂3φy

∂y3 +
∂2 f
∂y2

(
∂2w
∂x2 +

∂2w∗

∂x2

)
− 2

∂2 f
∂x∂y

(
∂2w
∂x∂y

+
∂2w∗

∂x∂y

)
+

∂2 f
∂x2

(
∂2w
∂y2 +

∂2w∗

∂y2

)
+ q− K1w + K2

(
∂2w
∂x2 +

∂2w
∂y2

)
= 0,

(27)

A∗11
∂4 f
∂x4 +(A∗66−2A∗12)

∂4 f
∂x2∂y2 +A∗22

∂4 f
∂y4−B∗21

∂3φx

∂x3 −(B∗11−B∗66)
∂3φx

∂x∂y2−(B∗22−B∗66)
∂3φy

∂y∂x2

− B∗12
∂3φy

∂y3 −
(

∂2w
∂x∂y

)2

+
∂2w
∂x2

∂2w
∂y2 − 2

∂2w
∂x∂y

∂2w∗

∂x∂y
+

∂2w
∂x2

∂2w∗

∂y2 +
∂2w
∂y2

∂2w∗

∂x2 = 0,

(28)
and two Eqs. (24) and (25) are unchanged as

B∗21
∂3 f
∂x3 +(B∗11−B∗66)

∂3 f
∂x∂y2 +D∗11

∂2φx

∂x2 +(D∗12+D∗66)
∂2φy

∂x∂y
+D∗66

∂2φx

∂y2 −A44
∂w
∂x
−A44φx =0,

(29)

B∗12
∂3 f
∂y3 +(B∗22−B∗66)

∂3 f
∂y∂x2 +D∗22

∂2φy

∂y2 +(D∗21+D∗66)
∂2φx

∂x∂y
+D∗66

∂2φy

∂x2 −A55
∂w
∂y
−A55φy =0.

(30)
Eqs. (23)÷ (26) or (27)÷ (30) are nonlinear equations in terms of four unknown functions
w, φx, φy and f and are used to investigate the buckling and post-buckling of perfect or
imperfect eccentrically stiffened functionally graded (ES-FGM) plates subjected to me-
chanical load, thermal load or combined thermo-mechanical loads. It is obvious that this
system of equations is more complicated than the one established by using the classical
plate theory. This is also the main reason why the nonlinear stability analysis of stiffened
FGM plate based on FSDT is much more complicated than nonlinear stability analysis of
stiffened FGM plate based on CPT (there are only two nonlinear equations).

3. BOUNDARY CONDITIONS AND PROCEDURE OF THE SOLUTION

Suppose that three cases of boundary conditions for an imperfect ES-FGM plate
will be considered [8]

Case (1). Four edges of plate are simply supported and freely movable (FM) i.e.

w = φy = Nxy = Mx = 0, Nx = Nx0 at x = 0, a,
w = φx = Nxy = My = 0, Ny = Ny0 at y = 0, b.

(31)

Case (2). Four edges of plate are simply supported and immovable (IM) i.e.

w = u = φy = Mx = 0, Nx = Nx0 at x = 0, a,
w = v = φx = My = 0, Ny = Ny0 at y = 0, b.

(32)
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Case (3). The edges of plate are simply supported. Uniaxial edge loads are ap-
plied in the direction of the x-coordinate. The edges x = 0, x = a are considered freely
movable, the remaining two edges being unloaded and immovable. The boundary con-
ditions, for this case, are

w = φy = Nxy = Mx = 0, Nx = Nx0 at x = 0, a,
w = v = φx = My = 0, Ny = Ny0 at y = 0, b.

(33)

where Nx0, Ny0 are pre-buckling force resultants in the direction x and y respectively, for
case (1) and the first of case (3), and they are fictitious compressive edge loads rendering
the edges immovable for case (2) and the second of case (3).

The analytical solution of the system of Eqs. (27) ÷ (30) satisfying the boundary
conditions exactly for w and on average sense for φx, φy can be found in the form [23]

w = W sin αx sin βy, w∗ = ξh sin αx sin βy,

φx = φ10 cos αx sin βy + φ11 sin 2αx, φy = φ20 sin αx cos βy + φ21 sin 2βy,

f = f1 cos 2αx + f2 cos 2βy + f3 sin αx sin βy +
1
2

Nx0y2 +
1
2

Ny0x2, (34)

where α = mπ
a , β = nπ

b and m, n are numbers of half waves in x and y directions, respec-
tively, and the coefficient ξ ∈ [0, 1] is an imperfection size of plate.

Substituting Eq. (34) into Eqs. (28), (29) and (30) and carrying out some calcula-
tions, yield

f1 = L1.W. (W + 2ξh) , f2 = L2.W. (W + 2ξh) , f3 = L3.W, (35)

and

φ10 = L4.W, φ20 = L5.W, φ11 = L6.W. (W + 2ξh) , φ21 = L7.W. (W + 2ξh) , (36)

where the coefficientsLi are defined in Appendix III.
Substituting the expression (34) into Eq. (27) and applying Galerkin’s method for

resulting equation, we obtain[(
16α4B∗21L1 + 16β4B∗12L2 − 8α3D∗11L6 − 8β3D∗22L7

)
.W. (W + 2ξh) +

−2α2β2L3.W. (W + ξh)
] (−16δmδn

3αβab

)
− 2α2β2 (L1 + L2) .W. (W + ξh) . (W + 2ξh) +

+
{[

α4B∗21 + α2β2 (B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3 +

[
α3D∗11 + αβ2 (D∗21 + 2D∗66)] L4+

+
[
β3D∗22 +α2β (D∗12+2D∗66)] L5−K1−

(
α2+β2)K2

}
.W

−
(
α2Nx0 + β2Ny0

)
. (W + ξh) + q

16δmδn

αβab
= 0,

(37)

in which δm =
1− (−1)m

2
, δn =

1− (−1)n

2
.

Nonlinear Eq. (37) is used to determine buckling loads and load-deflection post-
buckling curves of imperfect ES-FGM plates subjected to mechanical compressive loads,
thermal and combined loads and on elastic foundations.
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4. BUCKLING AND POST-BUCKLING ANALYSIS

4.1. Mechanical stability analysis
Consider a rectangular imperfect ES-FGM plate being simply supported at its edges

and freely movable (Case (1)) and subjected to the in-plane compressive loads Px and Py
uniformly distributed along the edges x = 0, a and y = 0, b respectively.

If q = 0, Nx0 = −hPx, Ny0 = −hPy and putting λ =
Py
Px

, W = W
h , Eq. (37) leads to

the explicit relation

Px =
−1

h (α2 + λβ2)

{[
(16α4B∗21L1 + 16β4B∗12L2 − 8α3D∗11L6 − 8β3D∗22L7 ).

W.
(
W + 2ξ

)
W + ξ

− 2α2β2L3.W
] (−16hδmδn

3αβab

)
− 2α2β2(L1 + L2)h2.W.

(
W + 2ξ

)
+
{[

α4B∗21 + α2β2(B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3 +

[
α3D∗11 + αβ2(D∗21 + 2D∗66)

]
L4

+
[
β3D∗22 + α2β(D∗12 + 2D∗66)

]
L5 − K1 − (α2 + β2)K2 }

W
W + ξ

}
.

(38)
For a perfect ES-FGM plate, ξ = 0, Eq. (38) becomes

Px =
−1

h (α2 + λβ2)

{(
16α4B∗21L1 + 16β4B∗12L2 − 8α3D∗11L6 − 8β3D∗22L7

−2α2β2L3
) (−16hδmδn

3αβab

)
.W̄ − 2α2β2(L1 + L2)h2.W2

+
[
α4B∗21 + α2β2(B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3 +

[
α3D∗11

+ αβ2 (D∗21 + 2D∗66)] L4 +
[
β3D∗22 + α2β(D∗12 + 2D∗66)

]
L5 − K1 − (α2 + β2)K2 } .

(39)
Taking W → 0, Eq. (39) gives the upper buckling load for a perfect ES-FGM plate

Px =
−1

h (α2 + λβ2)


[
α4B∗21 + α2β2 (B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3

+
[
α3D∗11 + αβ2 (D∗21 + 2D∗66)] L4

+
[
β3D∗22 + α2β (D∗12 + 2D∗66)] L5 − K1 −

(
α2 + β2)K2

 . (40)

Similarly, the upper static buckling load for ES-FGM plate based on the CPT, with-
out foundation and only subjected to mechanical loads, can be determined [12, Eq. 36]

Px upper =
π2

m2a2h

 D∗11m4 + D∗22n4 a4

b4 + (D∗12 + D∗21 + 4D∗66)m2n2 a2

b2

+

(
B∗21m4+(B∗11+B∗22−2B∗66)m

2n2 a2

b2 +B∗12n4 a4

b4

)2

A∗11m4+(A∗66−2A∗12)m2n2 a2

b2 +A∗22n4 a4

b4

 . (41)

4.2. Thermal stability analysis
Suppose that an imperfect ES-FGM plate on elastic foundations is a simple sup-

ported with immovable edges (Case (2)). So the condition expressing the immovable on
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the edges u = 0 at x = 0, x = a and v = 0 at y = 0, y = b is fulfilled on the average sense
as [24, 25]

b∫
0

a∫
0

∂u
∂x

dxdy = 0,
a∫

0

b∫
0

∂v
∂y

dydx = 0. (42)

From the relations (7) and (14) we obtain the following equations

u,x =A∗22 f,yy−A∗12 f,xx−B∗11φx,x−B∗12φy,y+(A∗22−A∗12) φm+A∗22φmx−A∗12φmy−
1
2

w2
,x−w,xw∗,x,

v,y =A∗11 f,xx−A∗12 f,yy−B∗21φx,x−B∗22φy,y+(A∗11−A∗12) φm+A∗11φmy−A∗12φmx−
1
2

w2
,y−w,yw∗,y.

(43)
Substituting expressions of (34) into Eq. (43), and then into the conditions (42), gives us

Nx0 =
[
β2L3 − α∆ (A∗11B∗11 + A∗12B∗21) L4 − β∆ (A∗11B∗12 + A∗12B∗22) L5]W

(
4δmδn

αβab

)
+

∆
8
(
α2A∗11 + β2A∗12

)
W (W + 2ξh)− φm − φmx,

Ny0 =
[
α2L3 − α∆ (A∗12B∗11 + A∗22B∗21) L4 − β∆ (A∗12B∗12 + A∗22B∗22) L5]W

(
4δmδn

αβab

)
+

∆
8
(
α2A∗12 + β2A∗22

)
W (W + 2ξh)− φm − φmy.

(44)

Introducing the relation (44) into Eq. (37), and q = 0, we get(
α2 + β2) φm + α2φmx + β2φmy =

(
t1

W. (W + 2ξh)
W + ξh

− t2W
) (

16δmδn

3αβab

)
+ (t3 + t30) .W. (W + 2ξh)− t4

W
W + ξh

+ (t2 − t20 − t21)W
(

4δmδn

αβab

)
,

(45)

where

t1 = 16α4B∗21L1 + 16β4B∗12L2 − 8α3D∗11L6 − 8β3D∗22L7,

t2 = 2α2β2L3, t3 = 2α2β2 (L1 + L2) ,

t4 =
[
α4B∗21 + α2β2 (B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3 +

[
α3D∗11 + αβ2 (D∗21 + 2D∗66)] L4

+
[
β3D∗22 + α2β (D∗12 + 2D∗66)] L5 − K1 −

(
α2 + β2)K2,

t30 =
∆
8

(
α4A∗11 + 2α2β2A∗12 +β4A∗22

)
,

t20 = α∆
[(

α2A∗11 + β2A∗12
)

B∗11 +
(
α2A∗12 + β2A∗22

)
B∗21] L4,

t21 = β∆
[(

α2A∗11 + β2A∗12
)

B∗12 +
(
α2A∗12 + β2A∗22

)
B∗22] L5.

(46)
The equation (45) shows the explicit relationship of temperature-deflection of an

imperfect ES-FGM plate on elastic foundations under thermal load.
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4.2.1. Uniform temperature rise
In this case, the FGM plate is exposed to temperature environment uniformly raised

from initial value Ti to final one Tf and ∆T = Tf − Ti is a constant. Then the thermal pa-
rameters φm, φmx, φmy are given as

φm =
h.∆T
1− ν

P,

φmx =
b1h1

d1

[
Emαm +

Emαcm + Ecmαm

k2 + 1
+

Ecmαcm

2k2 + 1

]
∆T = φ0

mx∆T,

φmy =
b2h2

d2

[
Emαm +

Emαcm + Ecmαm

k3 + 1
+

Ecmαcm

2k3 + 1

]
∆T = φ0

my∆T,

(47)

where
P = Emαm +

Emαcm + Ecmαm

k + 1
+

Ecmαcm

2k + 1
,

φ0
mx =

b1h1

d1

(
Emαm +

Emαcm + Ecmαm

k2 + 1
+

Ecmαcm

2k2 + 1

)
,

φ0
my =

b2h2

d2

(
Emαm +

Emαcm + Ecmαm

k3 + 1
+

Ecmαcm

2k3 + 1

)
.

(48)

Combining Eq. (45) with Eq. (47) and putting W =
W
h

leads to

∆T =
1

h
(
α2 + β2)
1− ν

P + α2φ0
mx + β2φ0

my



[t1
W.
(
W + 2ξ

)
W + ξ

− t2. W
] (16hδmδn

3αβab

)
+ (t3 + t30) h2.W.

(
W + 2ξ

)
− t4

W
W + ξ

+ (t2 − t20 − t21)W
(

4hδmδn

αβab

)


.

(49)
If the imperfection ξ = 0 and W → 0, Eq. (49) gives us

∆T =

−


[
α4B∗21 + α2β2 (B∗11 + B∗22 − 2B∗66) + β4B∗12

]
L3

+
[
α3D∗11 ++αβ2 (D∗21 + 2D∗66)] L4

+
[
β3D∗22 + α2β (D∗12 + 2D∗66)] L5 − K1 −

(
α2 + β2)K2


h
(
α2 + β2)
1− ν

P + α2φ0
mx + β2φ0

my

. (50)

4.2.2. Nonlinear temperature change across the thickness
Assume that the temperature through thickness is governed by the one-dimensional

Fourier equation of steady-state heat conduction

d
dz

[
K (z)

dT
dz

]
= 0, T |z=h/2 = Tc, T |z=−h/2 = Tm, (51)

where Tm and Tc are temperatures at metal-rich and ceramic-rich surfaces, respectively.
By solving Eq. (51) with mentioned boundary conditions, the solution for temperature
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distribution across the plate thickness is obtained

T (z) = Tm + ∆T

∞
∑

n=0

1
kn+1

(
−Kcm

Km

)n ( z
h +

1
2

)kn+1

∞
∑

n=0

1
kn+1

(
−Kcm

Km

)n , (52)

in which ∆T = Tc − Tm.
In only this subsection, we consider homogenous stiffeners, by following the same

procedure as in the subsection 4.2.1, the expressions of the thermal parameter, in this
case, are

φm =
∆T

1− ν
.H, φmx =

b1

d1
Esxα1∆T.Hx, φmy =

b2

d2
Esyα2∆T.Hy, (53)

and

∆T=
[t1

W.(W+2ξ)
W+ξ

−t2. W
]( 16hδmδn

3αβab

)
+(t3+t30) h2.W.

(
W+2ξ

)
−t4

W
W+ξ

+(t2−t20−t21)W
(

4hδmδn
αβab

)
α2+β2

1−ν H+ α2Esxα1b1
d1

Hx+
β2Esyα2b2

d2
Hy

,

(54)
where

Esx = Esy = Em, α1 = α2 = αm,

H =

∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p
h
(

Emαm
kp+2 + Emαcm+Ecmαm

kp+k+2 + Ecmαcm
kp+2k+2

)
∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p ,

Hx =

∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p
h
(
−1

kp+2

) (
−h1

h

)kp+2

∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p ,

Hy =

∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p
h
(
−1

kp+2

) (
−h2

h

)kp+2

∞
∑

p=0

1
kp+1

(
−Kcm

Km

)p .

(55)

4.2.3. Thermomechanical stability analysis
Consider an imperfect ES-FGM plate simultaneously acted by a thermal field and

an uniaxial compressive loading Px, uniformly distributed along the edges x = 0 and
x = a. Suppose that the plate is simply supported with movable edges x = 0, a and
immovable y = 0, b (Case (3)). Employing Nx0 = −Pxh and the second of Eqs. (43), (44),
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we obtain

Ny0 =
−A∗12
A∗11

Pxh− 1
A∗11

[(
β2A∗12 − α2A∗11

)
L3 + αB∗21L4 − βB∗22 L5]W

(
4δmδn

αβab

)
+

1
8A∗11

β2W (W + 2ξ)−
(

1− A∗12
A∗11

)
φm +

A∗12
A∗11

φmx − φmy.
(56)

Substituting expressions of Nx0 = −Pxh and Ny0, taking into account the expressions of
φm,φmx,φmy in (47), yields

Px =
A∗11

h
(
α2A∗11 + β2A∗12

) { [t1
W.
(
W + 2ξ

)
W + ξ

− t2. W
] (16hδmδn

3αβab

)
+ t3.h2.W.

(
W + 2ξ

)
− t4

W
W + ξ

− t5W
(

4hδmδn

αβab

)
+

β4

8A∗11
h2W

(
W + 2ξ

)
+

[
β2A∗12

A∗11
φ0

mx

− β2φ0
my −β2

(
1− A∗12

A∗11

)
hP

1− ν

]
∆T − q

1
W + ξ

(
16δmδn

αβabh

)}
,

(57)
where

t5 =
β2

A∗11

[(
β2A∗12 − α2A∗11

)
L3 + αB∗21L4 + βB∗22L5

]
. (58)

Eq. (57) is employed to trace postbuckling load-deflection curves of the imper-
fect ES-FGM plates subjected to the combined mechanical and thermal loads. Besides,
it is used to determine the dependence of the in-plane compressive edge loads vs. total
deflection (for given uniform temperature rise).

5. CONCLUSIONS

This paper investigates the nonlinear post-buckling analysis of imperfect FGM
plates reinforced by FGM stiffeners on elastic foundations subjected to in-plane com-
pressive mechanical loads or thermal loads, or thermo-mechanical loads simultaneously
by analytical approach. The material properties of plate and stiffeners are graded in the
thickness direction according to a volume fraction power-law distribution. Based on the
first order shear deformation theory with the kinematic nonlinearity and taking into ac-
count shear deformation of stiffener, temperature and Pasternak elastic foundation, the
couple set of four nonlinear stability equations for functionally graded plates are derived.
By applying Galerkin’s method, the closed-form expressions for determining the buck-
ling load and post-buckling load-deflection curves are obtained. The relations (11) and
(12) are most important relations found in this work in which the thermal elements in
plate and stiffeners in equations of Nij and Mij are considered. The effects of temper-
ature, stiffener, material properties, geometrical parameters and foundation parameters
will be analyzed in detail in the next part of the paper.
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APPENDIX I

A11 = A22 =
E1

1− ν2 , A12 =
E1ν

1− ν2 , A66 =
E1

2 (1 + ν)
,

A44 = χ1

[
E1

2 (1 + ν)
+

G1sb1

d1

]
, A55 = χ2

[
E1

2 (1 + ν)
+

G1rb2

d2

]
, χ1 = χ2 = 5/6,

B11 = B22 =
E2

1− ν2 , B12 =
E2ν

1− ν2 , B12 =
E2ν

1− ν2 , B66 =
E2

2 (1 + ν)
,

D11 = D22 =
E3

1− ν2 , D12 =
E3ν

1− ν2 , D66 =
E3

2 (1 + ν)
,

E1 =

(
Em +

Ec − Em

k + 1

)
h, E2 =

(Ec − Em) kh2

2 (k + 1) (k + 2)
,

E3 =

[
Em

12
+ (Ec − Em)

(
1

k + 3
− 1

k + 2
+

1
4k + 4

)]
h3,

E1s = Emh1 + Ecm
h1

k2 + 1
,

E2s = −Em
h1(h + h1)

2
− Ecm

(
h2

1
k2 + 2

+
h1h

2k2 + 2

)
,

E3s =
1
12

Em
(
3h1h2 + 6h2

1h + 4h3
1
)
+ Ecm

(
h3

1
k2 + 3

+
h2

1h
k2 + 2

+
h1h2

4k2 + 4

)
,

E1r = Emh2 + Ecm
h2

k3 + 1
,

E2r = −Em
h2(h + h2)

2
− Ecm

(
h2

2
k3 + 2

+
h2h

2k3 + 2

)
,

E3r =
1
12

Em
(
3h2h2 + 6h2

2h + 4h3
2
)
+ Ecm

(
h3

2
k3 + 3

+
h2

2h
k3 + 2

+
h2h2

4k3 + 4

)
,

C1 =
E2sb1

d1
, C2 =

E2rb2

d2
,

where h1, b1 and h2, b2 are the thickness and width of the longitudinal and transversal
stiffeners, respectively; d1 and d2 are the distance between two longitudinal and transver-
sal stiffeners, respectively,

φm =

h
2∫

− h
2

E (z)
1− ν

α (z)∆Tdz, φmx =
b1

d1

− h
2∫

− h
2−h1

Esx(z)α1(z)∆Tdz, φmy =
b2

d2

− h
2∫

− h
2−h2

Esy(z)α2(z)∆Tdz,

φb =

h
2∫

− h
2

zE (z)
1− ν

α (z)∆Tdz, φbx =
b1

d1

− h
2∫

− h
2−h1

zEsx(z)α1(z)∆Tdz, φby =
b2

d2

− h
2∫

− h
2−h2

zEsy(z)α2(z)∆Tdz.
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APPENDIX II

∆ =

(
A11 +

E1sb1

d1

)(
A22 +

E1rb2

d2

)
− A2

12, A∗11 =
1
∆

(
A11 +

E1sb1

d1

)
,

A∗22 =
1
∆

(
A22 +

E1rb2

d2

)
, A∗12 =

A12

∆
, A∗66 =

1
A66

, B∗11 = A∗22 (B11 + C1)− A∗12B12,

B∗22 = A∗11 (B22 + C2)− A∗12B12, B∗12 = A∗22B12 − A∗12 (B22 + C2) ,

B∗21 = A∗11B12 − A∗12 (B11 + C1) , B∗66 =
B66

A66
,

D∗11 = D11 +
E3sb1

d1
− B∗11 (B11 + C1)− B∗21B12,

D∗22 = D22 +
E3rb2

d2
− B∗22 (B22 + C2)− B∗12B12,

D∗12 = D12 − B∗12 (B11 + C1)− B∗22B12, D∗21 = D12 − B∗21 (B22 + C2)− B∗11B12,

D∗66 = D66 − B∗66B66.

APPENDIX III

L1 =
4α2D∗11 + A44

A∗11

(
4α2D∗11 + A44

)
+ 4α2B∗221

· β2

32α2 ,

7L2 =
4β2D∗22 + A55

A∗22 (4β2D∗22 + A55) + 4β2B∗212
· α2

32β2 ,

L3 =
(A44a22α− A55a12β) a13 + (A55a11β− A44a21α) a23

D∗
[
α4A∗11+α2β2

(
A∗66−2A∗12

)
+β4A∗22

]
+(a13a22−a12a23) a13+(a11a23−a21a13)a23

,

L4 =
L3

D∗
(a13a22 − a12a23)−

A44a22α− A55a12β

D∗
,

L5 =
L3

D∗
(a11a23 − a21a13)−

A55a11β− A44a21α

D∗
,

L6 =
8α3B∗21

4α2D∗11 + A44
· L1, L7 =

8β3B∗12
4β2D∗22 + A55

· L2, D∗ = a11a22 − a12a21,

a11 = α2D∗11 + β2D∗66 + A44, a22 = β2D∗22 + α2D∗66 + A55, a12 = αβ (D∗12 + D∗66) ,

a21 = αβ (D∗21 + D∗66) , a13 = −
[
α3B∗21 + αβ2 (B∗11 − B∗66)

]
,

a23 = −
[
β3B∗12 + α2β (B∗22 − B∗66)

]
.
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