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THE ELASTOPLASTIC PROBLEM OF THE 
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Abstract.The elastoplastic problem of the half-space with a hole subjected to axially sym
metric loading considered in t his paper is based on the elastoplastic deformation process 
theory. Solution of t his problem is carried out by using the modified elastic solution method 
and the finite element method. Some results of numerical calculation are presented here to 
give the picture of plastic domains enlarging in the body and t he obtained displacements 
on the free boundary of the ha lf-space. 

1. GOVERNING EQUATIONS 

Let 's consider an elastoplastic half-space with a hole subjected to axially symmetric 
loading, the strain state of which is determined by Cauchy relation 

u 
EO = - ; 

r 

8u 8v 
/rz = az + Br , /rO = /zO = O; 

where u = ur(r, z), v = Uz(r , z) and uo = 0 are displacement components. 
The stress-strain relation for elastic state can be expressed as follows: 

where [DJ -the matrix of elastic constants 

>. - Ev 
- (1 + v)( l - 2v) ' 

>. 
>. 

>. + 2µ 
0 

~1 [::1 = [D]{c}, 

µ /rz 

E 
µ = G = 2(1 + v) 

Stress and strain intensity are determined in the form 

(1.1) 

Eu = j~eijeij = v; V(Er - Ez) 2 + (Ez - Eo) 2 + (Eo - Er )
2 + (3/2 )1';~ , (1.3) 
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and the arc-length of the strain trajectory 

t 

s = j J~e.ije.ij dt . 
0 

For a plastic problem we use the elastoplastic deformation process theory [1] 

dO"ijkl = DijkldEkl' 

or in matrix form 

r

dO"r ] rD1 {dO"} = dO"z = D5 
dO"B Dg 
dTrz D13 

D2 D3 
D5 D1 
D10 Du 
D14 D15 

D
4

] r dc:r] Ds dc:z = [D]d{dc} , 
D12 dc:B 
D 16 drrz 

(1.4) 

(1.5) 

(1.6) 

where [D]d is matrix of stress-strain relation of elastic-plastic behaviour, Di can be written 
as following 

where 

D1=.\+2G -H1 ; D2 = .\-H2; D3 = .\-H3; D4= - H4, 

D5 = D2; D5=.\ + 2G-H5; D1=.\-H1; Ds=-Hs, 

Dg = D3; D10 = D1; Du = .\+ 2G - Hu; D12 = -H12 , 

D13 = D4; D14 = Ds ; D15 = D12; D15 = G - H15, 

4 S'f:r 2 SrrBzz 
H1 = -

3
Gw1 + 3G(w2 - wi) - 2 ; H2 = --Gw1 + 3G(w2 - wi)--2- , 

O'u 3 O'u 

2 SrrS(}(j ) SrrSrz 
H3 = --

3
Gw1 + 3G(w2 - wi) 2 ; H4 = 3G(w1 - w2 2 , 

O'u O'u 

4G ( )S'lz 2G G( )SJe H5 = -
3 

w1+3G w2 -w1 - 2 ; H1 = -- w1+3 w2 - w1 - 2 , 
O'u 3 O'u 

Hs = 3G(w2 _ w ) SzzSrz. 
1 2 ' 

O'u 

4 S5e 
Hu= -Gw1 + 3G(w2 - wi)-2 , 

3 O'u 

H12 = 3G(w2 _ w ) SeeSrz . 
1 2 ' 

O'u 
H15 = Gw1 + 3G(w2 - wi) S~, 

(]'u 

O'u 
w1 = 1 - 3Gs; 

W2 = 1 - ¢' (s) 
3G. 

(1.7) 

If the body has elastic behaviour, then w1 = w2 = 0 and the matrix [D]d automatically 
reduces to [D] in (1.1) . 

2. FINITE ELEMENT METHOD 

The hole in half-space has cylindrical form with radius R = Ro and height H = 2Ro 
subjected to axially symmetric loading. The part of the meridian cross-cut half-space is 
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discretized into 18 big t riangle elements, 40 small triangle elements and 4 infinite elements, 
such as [3 , 4], on this part of medium we put a system of cylindrical coordinates rOz 
(Fig. 1) . 
The finite element (e) having nodes (i,j, k) is studied. At a point NI(r, z) in the element 
( e) we choose: 

u = a1 + a2 r + a3 z, 

v = a4 + a5 r + a5 z 

and in t he matrix form equations (2 .1) can be written 

{u}2x1 = [F(r, z)]2x6 · {a}6xl · 

In the 3 nodes (i,j, k) we have 

q1e 1 ri Zi 0 0 0 a1 
q2e 

[ {u}'] 0 0 0 1 T"i Zi a2 
q3e 1 x· Yj 0 0 0 a3 {qy = {u}J J = [A]6x6 · {a}6xl· q4e 

{ u}k 0 0 0 1 T"j Zj a4 
q5e 1 T"k Zk 0 0 0 a5 
q5e 0 0 0 1 T"k Zk a5 

Instead of finding { ai} we find displacement components { q} e: 

(2. 1) 

(2.2) 

(2 .3) 

The displacement in a point M(r, z) is calculated through displacement of nodes (i , j , k) . 

where 

[N(r , z) ] = [ ~~] = [F(r, z)] · [A]-1 

is matrix of funct ions form. 
From (2.4) and Cauchy relat ion we obtain: 

(2.5) 

For infinite elements (e) having two nodes (i, j) we can approximate displacements as 
follows 
- elements 1 

a3 a4 
v= 2+22, r r z 

- elements 2 

- elements 3 
(2.6) 



248 

~elements 4 

2 
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ai.T a2 
U= -2-+2; 

z z 

a3.T a4 
v=-2-+2· z z 
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Fig. 1. The part of the meridian cross-cut half-space 

Repeating caculation we give displacement in a point M(T, z) of infinite elements 

{u}2x1 = [~1 ] {qV4xl ' 
2 2x4 

from here 
{c}~xl =[er Ez Ee /'rzf = [B(qn4x4{q}~x1· 

(2.7) 

(2 .8) 

For elements (el) with Ti = Tk = 0, ui = Uk = 0 (Fig.2), taking into account (2 .1) we get 

u q3 
u = -2.T = -T, 

a a 
U Uj q3 

E() = - = - = - . 
T a a 

For elements (e2) with Ti= 0, ui = 0 (Fig. 3), combining with (2.1) yields 

( ) 
q3 q3 - q5 

u = q5 - q3 + -T + z, 
a a 

u T z z) 
E() = - = ( - 1 + - + - ) q3 + ( 1 - - q5 . 

T a a a 

The strain matrix of elements (el) and (e2) can be written 

{ c }'
1 ~ [ f :J ~ [ 0 0 

8Nif8T 
8N2/8z 

1/a 
8Nif8z + 8N2/8T 

0 0 o] {q}6~1, 
4x6 
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8Nif 8z + 8N2/8r 
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a 
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z 

Fig. 2. Elements (el) with r; = rk = 0 Fig . 3. Elements (e2) with r ; = 0 

For the infinite element ( 4) Ui = 0 and from (2.6) we get 

8Ro 
u = q3-2 r; 

z 
'U 8Ro 

co = - = q3-· 
r z2 

The strain matrix of infinite element (4) can be calculated 

Elastic Problem 

8Ni/8r 
8N2/8z 
8Ro/z2 

8Ni/8z + fJN2/8r 

The variation of potential energy of element (e) is written as 

Ve 

= { Sqe}T ( 27r j j [Bef [D][Be] r dr dz) {q}e, 

Se 

taking herein strain expressions by (2.5), (2 .8) and matrix [D] in (1.1). 
Denote the stiffness matrix of elements 

[Ke] = 27r J J [Bef [D][Be] r dr dz, 

Se 

r 

(2.9) 

(2 .10) 
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then the relation (2.9) can be written as following 

{oUe} = {oqe}T[KeJ{q}e. 

For infini te elements the stiffness matrix is expressed by formulas 

+oo r 

[K]i = 2n J dr J [B]f[D][B]i .rdz, 

4Ro 2Ro 

+oo z 

[Kb= 2n J dz J [Bff[D][Bb .r clr , 

4Ro 2Ro 

+oo 2Ro 

[K]3 = 2n J dr J [Bff [D][B]3 .r dz, 

4Ro , 0 

+oo 2Ro 

[K]4 = 2n J dz J [B]f[D][B]4 .r dr. 

z 

p 

4Ro 0 

k 
,/""\ 
l e)· 
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1 
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Fig. 4. Element subjected to loading 

The variation of work done by external force is calculated as follows 

(2.11) 

oAe = J [ou ov] [~] dl = o{qe}T J[Nf [~] dl = o{qe}T{Pe}, (2.12) 

i k ik 

where the forces matrix of elements is determined 

{Pe}Gx1 = j[N]T [~] dl. (2.13) . 
i k 
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In the part of the meridian cross-cut half-space with 43 nodes, there are 86 nodal displace
ment components. Denoting the global vector of displacement { q}. 

we have relation between nodal and global displacements for element ( e) 

(2.14) 

From (2.11), (2.12), (2 .14), for half-space we have the variation of potential and work done 
by external forces. 

Le Le 
oU = Loue = {oq}r (L[Uf[Ke][Lel) {q}, 

e=l e=l 

Le Le 
oA = L6Ae = {oq}T (L[Le]T{Pe}). (2.15) 

e=l e=l 

where Le = 62- is the quantity of elements. 
The global stiffness and t he forces matrix are determined 

Le Le 
[K]s6x86 = L[Le]T[Ke][Le]; {P}s6xl = L[Le]T {Pe}. (2.16) 

e=l e=l 

According to oU = oA we derive the equation for finding global displacements in t he 
matrix form 

[K]sGx86{q}sGxl = {P}sGxl· 

The strain and stress of elements can be calculated by 

{ ce} = [Be]{ qe}, 

{o-e} = [D]{ce}· 

In an elastic problem the arc-length of the strain trajectory is expessed as 

Se = cu = J~eijeij· 
Plastic Problem. 

(2.17) 

(2 .18) 

(2.19) 

The loading process is divided into many steps n = 1, 2, .. , N. At each step a plastic 
problem can be solved by stepwise-iterative method, so called modified elastic solution 
method [1 , 2]. The results at (n - 1)-th step are basic data for n-th step. 
At n-th step, with iteration k=O, the stress-strain relation can be determined by (1.6) 

(2 .20) 
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Solving elastic problem with load 6.p(n) we have displacement increment of nodes { 6.q~n,O)}, 
from here the strain-stress increment and arc-length of the strain trajectory can be 
represented 

{6.c~n,O) } = [Be]{6q~n,O)} , 

{6.0"~n ,O)} = [D(0"1n- l), 8 (n-l)L. {6.c:in,O)}, (2.21) 

6.s(n ,O) _ ~6. (n,O) 6. (n ,O) 
3 e i j eij . 

-With k-th iteration (k > 0): 
vVe determinate t he nodal stress, displacement and arc-length of the strain trajectory 

{O"~n,k)} = {O"~n-1)} + {6.0"~n,k-1) }, 

{q~n,k)} = {q~n- 1)} + {6.q~n,k- 1)}, 

8(n,k) = 8 (n- 1) + 6.s(n,k-1), 

the stress-strain relat ion can be written 

{6.0"~n , k)} = [D(O"i~ , k~l)' 8 (n,k-l))L . {6.c:in,k)}. 

(2.22) 

(2.23) 

Solving elast ic problem with load 6.p(n) we have { 6.q~n , k)}. Similary (2 .21) , we get the 
values of {6.c:in,k)}, {6.0"~n , k)}, 6.s(n,k) . The iteration-process is finished when all nodal 
displacements satisfy the condition 

qJn,k) 
< o, (2.24) 

(n,k) (n,k-1) 
qi - qi 

for a given enough small o > 0. 
Since at each iteration matrix [D]d in (1.6) changes, thus global stiffness matrix [K] changes 
accordingly. 
If stopping at k-th iteration then we get nodal stress, displacements and arc-length of the 
strain trajectory at n-th step 

The boundary conditions. 

{O"~n)} = {O"~n- 1)} + {6.0"~n,k)}, 
{q~n)} = {q~n-1)} + {6.q~n,k) } , 

s(n) = s(n-1) + 6.s(n,k). 

(2.25) 

Since a half-space with a hole subjected to axially symmetric loading, thus displacements 
u = 0 at points in symmetric axis ( 0 z) . 
The suface load on the lateral suface r = Ro of the hole is distributed as follows 

{
o, 

O"r = -p, 
0 ~ z ~ z1 

Z1 ~ Z ~ Z2 
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3. NUMERICAL RESULTS 

We consider the half-space with a hole: Ro = 0.2 m; H = 2R0 , with material con
stants: · elastic modulus E = 2.105 MPa; Poisson's ratio v = 0.34; yeild limit a 5 = 250 
MPa; 1>

1 

(s)/ E = 0.2 . 
The hole is acted on by begining extenal force p0 = 4.1.108 N / m at step n = 0, the 

loading process is divided into 20 steps with increment 6.p = 0.3.108 N/m. The iteration
process is finished when the condition (2.24) satisfies for 6 = 0.002. At step n = 0 t he 
body is in the elastic state and at n-th step it is in t he elasto-plastic state (with n > 0). 

In t his case after numerical calculation we can see that at element 1 (Fig. 8) the stress 
intensity gets bigger value than ones at all other elements. Obtained results of the stress 
intensity and the arc-length of strain trajectory are presented on the Table 1. 

Table 1. The stress intensity and the arc-length of strain trajectory at element 1 

Step Loading Number of a ;;iax (MPa) smax 

(N/m) iteration 
0 4.1 x 108 0 248 .2516 0.00110885 
2 4.7 x 108 3 259.34 71 0.00136135 
4 5.3 x 108 3 272.8651 0.00167050 
6 5.9 x 108 2 287.4775 0.00200407 
8 6.5 x 108 2 302 .4003 0.00234346 
10 7. 1 x 108 3 317.5545 0.00268715 
12 7.7 x 108 3 333.5045 0.00304696 
14 8.3 x 108 2 350.1899 0.00342231 
16 8.9 x 108 2 367.9128 0.00382034 
18 9.5 x 108 2 387.1338 0.00425062 
20 10.l x 108 3 407.6660 0.00471409 
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Fig. 5. Graphs of nodals displacements u as a Fig. 6. Graphs of nodals displacements v as 
function of r a function of r 

Graphs of nodals displacements u as a function of r at horizontal lines 1, 2, 3, 4, 5 at 
step n = 0 are shown in Fig. 5 arid graphs of nodals displacements v on the horizontal line 
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5, i.e on the boundary of the half-space with a hole at step n = 0, n = 5, n = 10, n = 15 
as a function of r - in Fig. 6. 
Graphs of the stress intensity of elements (1), (3), (5) as a function of external force pare 
shown in Fig. 7. 

er u 
(Pa) 
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Fig. 7. Graphs of the stress intensity as a func
tion of external force p 
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Fig . 8. The plastic domains at step n = 11 

The plastic domains (1, 2, 3, 4) appear at steps n = (1, 5, G, 11) respectively (Fig. 8). 
The plastic domains of half-space are shown in Fig. 9 and Fig. 10 respectively at step 

n = lG and at step n = 20 . From the results it can be seen that: 
- vVhen external force increases, the nodals displacements, stress intensity and strain 

intensity of elements also get increased. 
- The plastic domains increases following external force . Plastic domains concentrate 

near positions subjected to loading. 
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Fig. 9. The plastic domains at step n = 16 
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Fig . 10. The plastic domains at step n = 20 

4. CONCLUSION 

- In this paper numerical calculations of strain-stress state of a half-space with a hole 
subjected to axially symmetric loading by finite element 'method are presented. 
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- For solving elasto-plastic problem we have used the modified elast ic solut ion method 
and relations of the elastoplastic process theory. 

- Convergence of iterat ive process happens quickly after some iterations. 
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BAI TOAN DAN DEO CUA BAN KHONG GIAN VOI LO TRlJ CH~U 
TAI DOI XUNG TRlJC 

Bai toan dan deo clla ban khong gian v&i lo tr\l ch!u t ai doi xl'.rng tr\lC dU'c;rc xet den 
trong bai toan d\fa tren w so ly t huyet qua trlnh bien d<:tng dan deo. Lai giai cua bai 
toan da dU'c;rc tlm ra theo phll'ang phap Bien the nghi~m dan hoi va phuang phap Phan ti.'r 
huu h<:tn . M9t vai ket qua giai so QU'C?'C QU'a ra da cho hlnh Anh mo r<)ng mien deo trong 
v~t the cling nlm chuyen v! tren bien t v do cua ban kh6ng gian. 


