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ABSTRACT. Second approximate solut ion of a second order differential equation with 
slowly varying coefficients and damping is obtained by Krylov-Bogoliubov-Mitropolskii method. 
The method is illustrated by an example. The second or higher order approximate solution 
is able to give better results than first approximate solution when the reduced frequency is 
many times larger than the small parameter. On the contrary, higher order solution diverges 
faster than the lower order solution when the reduced frequency becomes small (i .e., near to 
a turning point). In these situations matched asymptotic solution is important . An example 
is made to illustrate the matter. 

1 Introduction 

There are some well known perturbation methods (e.g ., Poincare method [1], WKB method 
[2-4], two-scale method [5-6] or Krylov-Bogoliubov-Mitropolskii (KBM) method [7-9] for 
handling linear and nonlinear different ial systems involving slowly varying coefficients. 
Among t he above procedures, KBM method is convenient and is widely used. The method 
has been extended to damped oscillatory and purely non-oscillatory systems with slowly 
varying coefficients by Bojadziev and Edwards [10]. Recent ly, Shamsul [11] has presented 
a brief way t o determine KBM solut ion (first order) of an n-t h, n = 2, 3, · · · order differ­
ent ial system. In an another recent paper , Shamsul et al [12] have presented an asymptotic 
solut ion of a second order different ial system in presence of strong linear damping force 
based on [13] . Sometimes first approximat e solut ion obtained in [10-11] gives desired result 
when t he linear damping effect is very small. Otherwise t he solution (even if t he damping 
is small rather t han very small) gives incorrect result after a time interval, T > > 1 where 
t he reduced frequency becomes small. It is interesting to note t hat higher approximat e 
solut ions are unable t o give correct result in t hese cases, since t hey diverge faster t han first 
order or a lower order solut ion . In these sit uat ions matched asymptotic solut ion is only 
able t o give desired result . Shamsul et al [14] found an asymptotic of a second order equa­
t ion characterized by purely non-oscillatory process. When reduced frequency becomes 
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small, the oscillation is almost non-oscillatory or purely non-oscillatory, so that Shamsul 
et al 's [14] solution is possible to match with KBM [9-11] solut ion in these situations. 

2 The Method 

Bojadziev and Edwards [10] have considered the following second order ordinary nonlinear 
differential equation with slowly varying coefficients 

x + 2k(T)X + v2 (T)x = c f(x , x, T) , (2 .1) 

and obtained a first approximate solution of Eq. (2 .1). But we can easily obtain the 
second approximation of Eq. (2.1) followed by Popov [15], who actually determined a 
second approximate solution of a second order equation [similar to Eq. (2.1) ] with constant 
coefficients and significant damping, i .e., k > E . But in the case of variable coefficients , 
an extended form KBM solution [7-10 ,15] is needed even if the damping is small , i.e. , 
k = 0 ( c) especially when v ( T) is in a decreasing order. 

For c = 0, Eq. (2.1) has two eigen-values namely -k(To) ± iw(To), w2(To) = v2(To) -
k2(To) (w(T) is known as a reduced frequency) and the unperturbed solution of Eq. (2. 1) 
becomes 

x( t, 0) = aoe- k(ro) t cos[w( To) t + cpo], (2.2) 

where a0 and cpo are arbitrary constants and To represents the value of T when E = 0. 
When c -1- 0, there exist an asymptotic solution of Eq. (2.1) in the form [9-12] 

(2.3) 

where a and 'l/J satisfy the differential equations [10-12] 

a= - k(T) a+ cA1(a, T) + c2 A2(a , T) + c3 
· · · , 

. 2 3 
'l/J = w(T) + cB1(a, T) + c B2(a, T) + c · · ·. (2 .4) 

To determine the unknown functions u1 , u2 , · · · , Ai , A2, · · ·; Bi B2, · · · , it was early 
restricted in KBM method [7-9] that the functions ui, u2 , · · · exclude first harmonic terms 
and Ai, A2 , · · · ; Bi B2, · · · are independent of phase variable 'l/J . It is noted that expansion 
Eq. (2 .3) is valid when~<< v(T) and cp << v(T) or~ - w << v(T) [16] . Certainly these 
restrictions are strictly maintained when the coefficients, k , v or w are constants . On the 
contrary, it is too much difficult to maintain the later restriction when v( T) or w( T) is in 
a decreasing order . 

Differentiating Eq. (2.3) twice with respect to t, substituting for the derivatives x, x 
and x into Eq. (2.1) , utilizing Eq. (2 .4) and comparing t he coefficients of c, c2

, we obtain 

I I . ( 0A1 ) n/, ( A k 2 CJ Bi) . n/, w0a sin 'l/J - k a cos 'l/J - ka oa - kAi - 2waBi cos'// - 2w i - a oa sm '// 

+ ( ( - ka :a+ :'l/J + k )2 + v2 - k2)ui = f(acos'l/J , - kacos 'l/J - wasin'l/J ), (2.5) 
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(2.6) 

When the coefficients of Eq. (2.1) become constants, k' = w1 = A~ = B~ = 0, and 
Eqs. (2.5)- (2.6) take the forms of t hose obtained by Popov [15] (see also [17]). Clearly 
the terms with appear in Eqs. (2.5)-(2 .6) due to change of the coefficients in Eq. (2 .1) . 
Sometimes a first order solution with constant coefficients agrees with numerical solution 
nicely while corresponding first order solution with variable coefficients gives desired results 
for a particular time interval, so that the problem is in its linear part only. Therefore our 
investigation may be limited to the linear part of Eq. (2.1), i .e., we would find the terms of 
a second approximate solution which are appeared for changing the coefficients of Eq. (2.1). 
However , in the case of linear system, J(acos 'lj;, - kacus'lj; - wasin'lj;), i .e., J(-·) contains 
terms involving acos'lj;, asin'lj;, i.e., f is free from cos21/;, sin21/;, sin31/;, .. .. Thus u1 = 0 
and Eqs. (2.5)-(2.6) reduce to the simplest form as 

wba sin 'lj; - k' a cos 'lj; + 2waB1 cos 'lj; - 2wA1 sin 'lj; = f , (2.7) 

. ( 1 oAi 2) - 2waB2 cos 'lj; - 2wA2 sm 'lj; - Ai +Ai oa - aBi cos 1/J + 

( 
I 8Bi A ) . Bi +Ai oa + 2 iBi sm 'lj; = 0. (2.8) 

In general, f (- ·), ui, u2 be expanded in a Fourier series as [7-9] 

00 

f(-·) = L Fn(a) cosn'lj; + Gn(a) sin n'lj;, (2.9) 
n=O 

and that ui, u2 have the terms in cos 'lj; and sin 'lj; missing, so that 

00 

ui = Uo(a, T) + L Un(a, T) cosn'lj; + Vn(a, T) sin n'lj;, 
n=2 

00 

u2 = Po(a, T) + L Pn(a, T) cosn'lj; + Qn(a, T) sinn'lj;. (2 .10) 
n = 2 
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since k' = 0. Now equating the coefficients of cos 'lj;, sin 'lj; we obtain 

(3.5) 

Then substituting the values of Ai and Bi from Eq. (3.5) into Eq. (2.8), we obtain 

-2waB2 cos'lj; - 2wA2 sin'lj; - (- d~ (;~) + (;~)2)acos 'lj; = 0. (3.6) 

Equating again the coefficients of cos 'lj;, sin 'lj; we obtain 

A2 = 0, B2 - !_ (-!!_ (::!_) +(::!_) 2
) 

- 2w dT 2w 2w · 
(3 .7) 

Substituting the values of Ai , Bi, A2, B2 from Eqs . (3 .5) and (3 .7) into Eq. (2.4) , we 
obtain 

Ew'a 
a= - Ea - - -

2w' 
. E2 ( d ( w' ) ( w' ) 2) 

'lj; = w + 2w - dT 2w + 2w · (3.8) 

Eq. (3.8) has an exact solution. Let us consider a particular case when lo = g , so that 
w2 = e- 7 

- E2 . Integrating Eq. (3.8) with respect tot, yields 

-ct~O a= aoe - , 
w 

2 - i E ( W - WO) E 1 1 
'l/J = 'l/Jo + -( wo - w) + 2 tan + - (- - - ) 

E ( E2 + WoW) 16 WO W 
(3 .9) 

E3 
+ 5- (w- 3 - w- 3 ) 

48 ° ) 
where w5 = 1 - E2 . Thus an approximate solution of Eq. (3. 1) is 

x = acos'lj;, (3.10) 

where a and 1f; are given by Eq. (3 .9) . 
Now we have to solve Eq. (2 .5) for obtaining a first order approximation of Eq. (3.2) , 

when E f = v2 x: . But in the case of small or significant or large damping effect, first order 
solut ion of a pendulum with constant coefficients and with slowly varying coefficients have 
already been obtained in [11 ,18] . So, we are not interested to repeat it . From a unified 
solution obtained in [11], we easily get the desired solution (in order of E:) as 

a 3 
x ~ acos?j; -

192 
cos3?j;, 

where a and 1f; satisfy the following equations 

Ew'a Ea3 
a~ -Ea - -- - -

2w 16 ' 
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. a2 
1f; ~ w(l - - ). 
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(3 .11) 

(3 .12) 



and 
(2 .18) 

The particular solution of Eqs. (2.16)-(2 .18) gives the unknown functions A1, B1 and 
u, which complete the determination of first order solution of Eq. (2.11). The method can 
be carried out to higher orders in a similar way, but the first order solut ion is able to give 
desired results for t ;::::: T . 

3 Example 

To illustrate the method, we consider the oscillations of a pendulum with variable length. 
The differential equation of t he motion is [11, 18] 

(3 .1) 

where m is the mass , x the angle of deviation of t he pendulum from the vertical, g the 
acceleration of gravity, l (T) the length of the pendulum varying slowly with time. For 
small oscillations we use the first term of the development of sin x, while we may use first 
two terms of sinx when x = 0(1). In these situations , Eq. (3 .1) can be written as 

x + 2cl'(T) l(:) + v2 (T)x = 0, (3 .2) 

. 3 

x + 2El' ( T) l ~) + v
2 

( T) x = v
2 

( T) : ) 
or, 

(3.3) 

where v2(T) = r(T;, T =Et, l' = j;. Generally the solution of Eq. (3.2) or Eq. (3.3) are 
determined by assuming that l changes linearly with T [10-11 ,18], but in this paper we 
consider the simplest case when l ( T) = l0e7

, lo constant. Therefore, ~ = 1 and the damping 
is purely constant . Eq. (3 .2) is similar to that of an aging spring [19-20] in presence of a 
viscous force . It is noted that Hung and Wu [19] obtained an exact solution of Eq. (3 .2) in 
terms of Bessel's functions when - 2ci: is missing. Similar exact solution exists even if the 
linear damping, -2ci: is present (see Sec. 5) . However perturbat ion techniques are not 
constructed in terms of Bessel's functions to date. Therefore, it is not possible to solve 
nonlinear equation Eq. (3 .3) in terms of Bessel's functions on the basis of a perturbation 
technique. It is interesting to note t hat Eq. (3 .1 ) has an exact solution [in terms of Elliptic 
functions (Jacobian)] when l is constant and a perturbation solution can be found when 
the damping is occurred due to a small viscous force (see [16] for details) . But in our 
problem (concern of t his paper) , t he small linear damping force , -2ci; is added to the 
motion due to increasing length (in order of ec:t) of t he pendulum. In this case the method 
developed in [16] is useless. 

In Eq. (3.2) , k = E, w2 = e~:g -c2 and f = 0. Therefore Eq. (2 .7) readily becomes 

wba sin 1./; + 2waB1 cos 1./; - 2wA1sin 1./; = 0, (3.4) 
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- 2c:t (8B1 2 B- ) f3 - c:T - c:t - 2c:t e -- - E i = --e e 
fJt E ' 

(3.18) 

and 
a:u _ 
[)t +cu = 0. (3 .19) 

The particular solutions of Eqs. (3.17)-(3.19) are 

B - /3 - c:T - c:t 
1 - 3c:2 e , (3.20) 

and u = 0. From Eq. (3.20) , we see that perturbation solution Eq. (2.12) is certainly valid 
when cc:T < c:2 . Now substituting the values of A1 , B1 from Eq. (3.20) into Eq. (2 .13) 
and integrating with respect to t, we obtain 

e - c:T ( e - c:t - 1) 
a= aoexp[ 2 ], 

E 

Thus the first order solution of the linear Eq. (3.2) is 

x(t , c:) = a+ {3e- 2c:t, 

(3 .21) 

(3.22) 

where a and f3 are given by Eq. (3 .19) . Solution Eq. (3.22) is a first approximate solution 
of Eq. (3 .2) and it may be used as an approximate solution of Eq. (3.3) when t 2: T , while 
solution Eq. (3 .10) or Eq. (3 .11) is used when t ::=:; T . 

4 Results and Discussions 

Usually higher approximate solution is used for obtaining better results . But in the case 
of varying coefficients, sometimes higher approximations give more incorrect results . So­
lution Eq. (3. 11) together with Eqs. (3.14)-(3 .15) represents the first approximation while 
Eq. (3.11) represents with Eqs. (3.14), (3.16) represents second approximation. Comparing 
Eqs. (3 .15) and (3 .16) we may conclude that second approximation gives more incorrect 
results than t he first approximation, since 'ljJ given in Eq. (3.16) becomes large as that of in 
Eq. (3 .15) when w = O(c:) . Clearly, in Eqs. (3.15)-(3.16) 'ljJ relates with w as respectively 
w-1 and w- 3 . Therefore, second approximation gives more incorrect results than the first 
approximation of the phase 'l/J, which makes x incorrect (see Fig. l). Thus the matched 
asymptotic solution is needed in this situation. These solution gives desired results (see 
Fig.2). 

5 Exact solution of Eq. (3.2) 

For the particular case when g = lo, Eq. (3.2) becomes 

(5.1) 
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It is obvious that solution Eq. (3.10) together Eq. (3.8) or Eq. (3.9) represents a second 
approximate solution of Eq. (3.2). On the contrary, solution Eq. (3 .11) together with 
Eq. (3.12) represents first approximate solution of Eq. (3.3) while Eq. (3.22) represents a 
mixed approximate solution of Eq. (3 .3) [in which second approximation is for the linear 
part while first approximation is for the nonlinear part] where a and 'ljJ satisfy the following 
equations 

. Ew'a Ea3 
a= - Ea - - - --

2w 16 ' 
. a2 E2 ( d ( w') ( w') 2) 'l/; = w( l - -)+ - - - - + - . 

16 2w dT 2w 2w 
(3.13) 

Eqs. (3.12) or Eq.s (3.13) has not an exact solution. Usually the integration of Eqs. (2.4) is 
done by well-known techniques of calculus; but sometimes they are solved by a numerical 
procedure [21-22]. In this case, the perturbation method facilitates the numerical method. 
The variables a and 'ljJ change slowly with time. So, it requires the numerical calculation 
of a few number of points. Contrary, a direct attempt to solve Eq. (2.11) requires the 
numerical calculation of a great number of points. Often one is not interested in only the 
oscillating processes itself, i.e., finding the x in terms of t, but mainly in the behavior of 
t he amplitude, a and the phase r.p or 'ljJ , which as t increases characterize the oscillating 
processes [11 ,22]. However, an approximate solution of Eq. (3 .12) or Eq. (3.13) may be 

3 2 - 2€ t 
found easily by considering the third term of the first equation, namely e:1a5 ~ e:aa0

1
e
6 

, 

since the change of a is small. Thus the approximate solution of the first equation of 
Eq. (3.12) or Eq. (3.13) is 

(3 .14) 

Now substituting a= a0e - e:t ~(neglecting the second term) into second member of 
Eq. (3. 12) or Eq. (3.13) and integrating with respect tot, we obtain 

2 1 E ( W - WO) a~ ( 2e:t ) 'ljJ ~ 'I/Jo + - ( wo - w) + 2 tan - ( 2 ) + - e- - 1 , 
E E +WOW 32E 

(3 .15) 

or 

(3 .16) 

Clearly solution Eq. (3.10) or Eq. (3.11) is valid when w > i::; but the perturbation 
solution Eq. (3 .10) or Eq. (3.11) is unable to give desired results when w = O(i::). In this 
case we have to use a solution of the type Eq. (2.12) instead of Eq. (3.10) or Eq. (3.11) . 
Since we have already considered the case where v2 (t + e:T)x << 1, we may neglect the 
term v2 (t+ e:T) ~3 . Therefore, we solve linear Eq. (3.2) instead of Eq. (3.3). In this situation 
Eqs. (2.16)-(2.18) become 

(3.17) 
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x 0 .6 

0.4 

0.2 

20 

-0 .2 

·0.4 

·0 .6 

·0 .8 

Fig. 2 

Second approximate (mixed type: second approximation is for the linear part and 
first approximation for the nonlinear part) solut ion Eq. (3 .11) of Eq. (3.3) in which 'I/; is 
computed by Eq. (3 .16) for c = 0.1 [with initial conditions , x(O) = 1, .i::(O) = 0 or a(O) = 
1.0079, 'l/;(O) = - 0.0738] is plotted when t :S 38, where x (38) = - 0.0605 , .i::(38) = 0.0071 
and t hen init ialized these values of x , x, approximat e solution Eq. (3.22) is computed and 
potted from t = 38 to t = 46. The corresponding numerical solut ion is also plotted t o 
compare the results. The figure indicates that the matched solution nicely agrees with the 
numerical solution. 
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In absence of damping, Hung and Wu [19] presented an exact solut ion of x + C 7 x = O 
in terms of Bessel's functions , introducing the transformat ion 

(5 .2) 

However, we can able to present an exact solut ion of Eq. (5.1) replacing t by s as 

d2x 3 dx 
- - -- + x =O. 
ds2 s ds 

(5.3) 

Eq. (5 .3) represents a modified Bessel's equat ion (of t he form x y" + (1 - 2n)y' + xy = 0) , 
whose solution is 

(5.4) 

whereA and B are two arbitrary constants. It is noted Hung and Wu 's [19] solut ion for 
t he equation, x + e- 7 x = 0 is x = AJo(s) + BY0 (s). 

x 0.8 

-0.8 

..0.8 

Fig . 1 

First and second approximate (mixed type: second approximation is for t he linear 
part and first approximation for t he nonlinear part ) solut ion Eq. (3 .11 ) of Eq. (3.3) in 
which 'lj; is computed by respectively Eq. (3. 15) and Eq. (3. 16), for E = 0.1 [wit h init ial 
conditions, x(O) = 1, ±(0) = 0 or a(O) = 1.0079, 'lj;(O) = - 0.0738] and corresponding 
numerical solution (generated by Runge-Kutta fourt h order procedure) are plotted. Clearly 
first approximate solut ion agrees wit h numerical solutions nicely unt il t :S 38 and second 
approximation fort < 41. When t > 41, second approxi"mat ion rapidly changes to upward 
while first approximation slowly diverges from the numerical solut ion when t > 38. It is 
not ed t hat t he middle line (after t = 41) represents t he numerical solut ion. 
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Fig . 2 

Second approximate (mixed type: second approximat ion is for the linear part and 
first approxiijrlation for the nonlinear part ) solution Eq. (3 .11 ) of Eq. (3.3) in which 1jJ is 
computed by Eq. (3.16) for E = 0.1 [with init ial condit ions, x(O) = 1, i(O) = 0 or a (O) = 
1.0079, 1/; (0) = - 0.0738] is plot t ed when t '.S 38, where x(38) = - 0.0605 , ±(38) = 0.0071 
and then initialized t hese values of x, x, approximate solut ion Eq. (3 .22) is computed and 
potted from t = 38 to t = 46 . The corresponding numerical solut ion is also plot t ed t o 
compare the results. The figure indicates t hat the mat ched solution nicely agrees wit h t he 
numerical solution. 
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ANH HUONG cuA XAP xi B.AC CAO TRONG NGHIEM TIEM cAN 
, ' . " " ,.. "" . "" A . 

CUA PHUONG TRINH VI PHAN VOI HE SO BIEN DOI 
" ,... " ,J ._ " 

CHA.M TRONG LAN CAN DIEM RE NHANH 

N ghi~m xap xi b~c hai cua phuang trlnh vi phan cap hai v&i tham s6 bi en doi ch~m da 
nh~n duqc bang phuang phap Kmlov-Bogoliubov-Mitropolskii, cling v&i minh ho0 trong 
m9t vf d\l. Cac xap xi b~c hai va b~c cao han nfra cho phep ta nh~n dm;rc nghi~m chfnh 
xac han xap xi b~c nhat khi ma tan s6 quy doi l&n han nhieu lan tham s6 be. N guqc 10i 
khi tan s6 quy doi nhO (gan v&i diem re nhanh) thl nghi~m xap xi b~c cao 10i phan ky 
nhanh hem cac xap xi b~c thap. Luc nay nghi~m ti~m c~n tmmg thi'.ch dong vai tro quan 
tr9ng. Di'eu nay duqc minh ho0 trong vf d\l. 
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