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ON A VARIANT OF THE ASYMPTOTIC PROCEDURE 
(WEAKLY NONLINEAR SYSTEMS IN A SPECIAL CASES) 

NGUYEN VAN DINH 

Institute of Mechanics 

ABSTRACT. The variant the asymptotic procedure presented in [2, 3] is applied to oscil­
lating systems in a special case. 

1 Introduction 

The modified asymptotic procedure presented in the part I is now applied to study weakly 
nonlinear systems in a special case. As known, this case is characterized by the absence 
of a part of variables in t he governing differential equations and, consequently, the deter­
mination of stationary oscillations needs higher approximations. 

Malkin J. G. [3] has paid attention on special cases, using the Poincare method [3]. 
The usual asymptotic procedure with full amplitude and full dephase angle as variables 
is not convenient : it cannot use the mentioned characteristic (the absence of a part of 
variables) and moreover , t he equations for determining stationary oscillations in the end 
of the asyinptotic procedure are often complicated enough. 

Contrarily, with the variant of the asymptotic procedure given in the part I , regarding 
to the mentioned characteristic, we can determine stationary oscillation successively in 
each st ep of appoximation. 

We restrict ourselves in examining a system of the form: 

.. 2 f( . ) x+wx = c x,x,rp, rp =wt, (1.1) 

where x is an oscillatory variable, overdots denote derivation with respect to time t; w 

is the excit ing frequency; c > 0 is a small parameter; f(x, ±, rp) is a function of (x, ±, rp) , 
27r-periodic with respect to rp . For simplicity, f (x, ±, rp) is assumed to be a trigonometrical 
polynomial i.e. it can be expanded in finite Fourier series in wt with polynomial in (x, x) 
coefficients . 

2 Some properties related to a spedal case 

Let us briefly recall some properties of the function f( x, ±, rp) in a special case. 
By f (a, B,'lj; ) we denote th~ function f (x,x,rp) after replacing x, ±, rp by acos 'lj;, 

- wa sin 1/J, 'lj; - e, respectively: 

f(a, B, 'lj;) = j(acos 'lj;, - wasin 'lj;, 'lj; - B) . (2 .1 ) 
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The Fourier series of f (a , e , 'ljJ) is of the form: 

N 

f(a , e, 1/J ) = fo(a , e) + L [Sn( a, e) sinn'ljJ + Cn(a , e) cosn'l/J ]' (2.2) 
n = l 

here N is a positive integer. 
Let us consider the case in which 

27r 

S1(a, e) = ~ j J(acos 'ljJ, -wasin 'ljJ , 1/J - e) sin 'ljJ d'ljJ = S1(a), (2.3) 

0 
27r 

C1(a, e) = ~ j f (acos'ljJ, - wasin 'ljJ, 'I/; - e) cos'l/;d'ljJ = 0, (2 .4) 

0 

i.e. the first harmonic cos 'I/; is absent and the coefficient of the first harmonic sin 'ljJ depends 
only on a. 

Differentiating (2 .3), (2 .4) with respect to a and e yields: 

27r 

851 dS1 I 1 J ( ) 
8

a = da =S1(a)=; cos'l/J · f x - wsin'l/J·fx sin 'ljJ d'ljJ, (2.5) 

0 
27r 

8C1 1 J ( . ) 8a = ;;: cos 'ljJ . f x - w sm 'ljJ . f x cos 'l/; d'I/; = 0, (2 .6) 

0 

27r 

851 -1 J . 
8e =---;- f 'P . sm 'ljJ d'ljJ = 0, (2 .7) 

0 
27r 

8C1 -1 J 
8

e = ---;- f'P·cos 'ljJ d'l/J =O, (2 .8) 

0 

where f x, fx, f 'P are the partial derivatives of f( x.±, <p) with respect to x, ±, <p, respectively; 
S~ (a) is the derivative of 51 (a) with respect to a. 

From (2.5), (2.6) it follows that the expression (cos 'ljJ · f x - w sin 'ljJ fx) does not contain 
the first harmonic cos 'ljJ and the coefficient of its first harmonic sin 'ljJ depends only on a 
i.e. we can write: 

cos 'ljJ . f x - w sin 'I/; . f j; = s~ (a) sin 'ljJ + ( .. . ) ' (2.9) 

here and below, ( .. . ) represents "constant" and higher harmonic terms. 
Analogously, from ( 2. 7) , ( 2. 8), it follows: 

f<p(acos'I/;, - wasin'ljJ , 'I/; - e) = ( .. . ) . (2 .10) 
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With regard to (2 .10) , by comparing t he two expressions of the first partial derivative Bf 
8'1/; 

calculated from (2 .1) and (2.2), that is 

~~ = -asin7,b · fx -wacos ?,b · fx + fcp = S1(a) cos 7,b + ( .. . ), (2.11 ) 

we can write 

f x · sin 'lfi + w f x · cos 'lfi = - ~ S 1 (a) cos 'If; + ( .. . ) . 
a 

(2 .12) 

Differentiating (2.10) with respect to e gives: 

f 'P2 (a cos 'If;' -wa sin 'If;' 'If; - e) = ( . . . ) . (2.13) 

Analogously, with regard to (2.13), by differentiating (2.10) with respect to 'If;, we get: 

sin 'If; · f cpx + w cos 'If; · f cpx = ( .. . ) . (2.14) 

Finally, with regard to (2 .9), (2 .13) , (2.14) , by comparing the two expressions of the second 

partial derivative ~~ calculated from (2. 1) and (2.2), that is: 

a21 . 
o'l/;2 = -a( cos'lf; · fx -wsin 'lf; · fx ) 

+ a2 ( sin2 'If; · f x2 + 2w sin 'If; cos 'If; · fxx + w2 cos2 'If; · f ±2 ) 
- 2a (sin 'If; · f x<p + w cos <p · f x<p ) + f 'P2 = - S1 (a) sin 'If; + ( . .. ) , (2 .15) 

we can write: 

sin2'1/; · f x2 + 2wsin 'lf;cos 'lf; · fxx + w2cos2'1/; · f x2 = S1(a) sin 'lf; + ( ... ), (2.16) 

where 

(2.17) 

3 Statio nary oscillation from the usual asymptotic proce-
d ure 

For comparison, we briefly recall the usual asymptotic procedure. Following asymptotic 
expansions will be used 

X = acos 'lj; + W1(a , B, 'If;)+ c2u2(a, B, 'If;)+ .. . , 'If;= <p - B =wt - B, (3 .1) 

a = EA1(a, e) + c2 A2(a, e) + ... ' (3.2) 
. 2 e = EB1(a, e) + c B2(a, e) + .. . , (3 .3) 
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where a and e are the full amplitude and the full dephase angle of the first harmonic; 
Ai, Bi (i = 1,2, ... ) are functions of (a , B) ; ui (i = 1,2, .. . ) are functions of (a,e ,'ljJ ), 
27r-periodic with respect to 'l/J, do not containing the first harmonics. 

Substitut ing (3.1) into (1.1) , using (3.2), (3 .3) , expanding J(x, x, r.p) in Taylor series of 
E, then equating the terms of like powers of E yield in the first approximation: 

- 2wA1 sin 'ljJ - 2waB1 cos'ljJ + w2 (~~; + u1) = f(acos 'lj;, -wasin 'lj;, 'lj; - B). (3.4) 

Using (2.2), (2.3), (2.4) , equating the terms of like harmonics, from (3.4) it follows: 

1 
Ai(a, e) = Ai(a) = -

2
wS1(a) , (3.5) 

1 
B1 (a , B) = -

2
wa C1 (a, e) = 0, (3.6) 

32 N 
w

2 ( 3;2
1 + U1) = fo(a , e) + L [Sn(a , e) sin n'ljJ + Cn(a , e) cosn'l/J]' (3 .7) 

n = 2 

The same procedure gives successively Ai(a, B) , Bi(a, B) (i = 2, 3, ... ) in which both 
variables a and e are present . 

In the n-th approximation, to determine the full amplitude a* and the full dephase 
angle e* of stationary oscillation, we use the stationarity conditions which are expressed 
as two equations 

A(a, e) = cA1 (a)+ c2 A2(a, e) + ... + En(a, e) = 0, 

B(a, e) = c2 B2(a, e) + .. . +En Bn(a, e) = 0. 

Stability condit ions are two inequalities 

(
8A8B 8A8B) 
8a ae - ae 8a * > 0. 

(3.9) 

(3 .10) 

Note that no information is given in intermediate step and (a*, e*) can only be determined 
at t he end of the asymptotic procedure. 

4 Stationary oscillation from a variant of the asymptotic 
procedure 

The variant of the asymptotic procedure presented in part I allows us to determine sta­
tionary oscillation successively in each step of approximation. 

First, t he same expansions (3.1) , (3.2), (3.3) are used but a and e are now t he amplitude 
and the dephase angle of order c0 of the first harmonic; consequently, Ui (a, e, 'ljJ) contain 

. the first harmonics ai cos 'ljJ + bi sin 'ljJ . 
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In the firs t approximation, from (3.5), using the stationarity condition 

( 4.1) 

we obtain immediately ao - the stationary amplitude of order c:0 of the first harmonic . 
The stationary dephase angle Bo remains undeterminate ; t his means that in the first 

approximation, there exists a family of stationary oscillations with amplitude ao but with 
arbitrary dephase angle (although t he system is non-autonomous) . 

The expression (3.8) of u1 is replaced by 

1 N 1 
u1 = 2{fo(a, B) - L -2- [Sn(a, B) sin nB + Cn(a , B) cosnB]} 

w n - 1 n=2 

(4.2) 

where a1, b1 are two constants to be chosen, N is a positive integer. 
Let us move to the second and third approximation. We have 

2([J2u2 ) - 2wA2 sin 'ljJ - 2waB2 cos 'ljJ + w a'ljJ2 + u2 

8A1 82 u1 . 
= - A1 aa cos 'ljJ - 2wA1 a'ljJaa + uifx(a cos'l/J , - wa sm 'l/J, 'ljJ - B) 

+ (Ai cos'l/J + w ~; )!x(a cos 'ljJ, - wasin 'l/J, 'l/J - B) , ( 4.3) 

2 (82
u3 ) 8A1 . - 2wA3 sin 'ljJ - 2waB3 cos'ljJ + w a'ljJ2 + u3 = - A2 aa cos 'ljJ + 2AiB2 sm 'lf! 

82u1 82ui 82u1 8A2 8B2 . 
- 2wA2 a'ljJaa - 2wB2 a'ljJaB - 2wB2 o'ljJ2 - A1 aa cos 'lf! + Ai aa sm 'ljJ 

2 8
2
ui 8Ai 8ui ( 8ui 8u2) 1 2 

- Ai aa2 - Ai 8a 8a + u2f x + Ai 8a + w a'ljJ fx + 2uifx2 

( 
8ui) 1 ( 8u1) 2 . + u1 A1 cos 'ljJ + w a'ljJ j xx + 2 A1 cos 'ljJ + w a'lf! f :r2 . (4.4) 

Denoting the right hand side of (4.3) by j (2l(a , e, 'l/J) we expand it in Fourier series 

M 

1(2l (a, e, 'l/J) = 162
\a, e) + I::: [s~2 l(a, e) sinn'l/J + c~2l(a , e) cosn'l/J J, (4.5) 

n=i 

where M is a positive integer. 
8u1 

Note that a1, b1 are present only in the sum u1fx + w a'ljJ fx and the latter can be 

written as: 

uif x + w Gui fx = ai (cos 'ljJ · fx - w sin 'ljJ · fx) + b1 (sin 'l/J · f x + w cos 'l/J · f x + ... , ( 4.6) 
a'l/J 
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or with regard to (2 .9), (2 .12): 

where non-written terms do not contain ai and b1 . 

Therefore , si2l and ci2
) are of the form: 

Equating the terms of like harmonics yields: 

1 M 1 
u2 = 2{162l(a, B) - ~ - 2-[SA2)(a, B) sinm/; + CA2)(a, B) cosm/;]} 

w ~n -1 
n= 2 

where a2 , b2 are two constants which are still undeterminate. 
We impose on A2(a, B) and B2(a, B) the stationarity conditions: 

A2(ao , Bo)= 0 or aiS1(ao) + si2
)(ao , Bo)= 0, 

B2(ao,Bo)=O or ci2
l(ao,Bo)=O. 

The dephase angle Bo of order s0 is obtained by solving the equation 

- (2) 
C 1 (ao , Bo)= 0. 

Then, with the assumption S~(ao) f. 0, the constant a1 is chosen such that 

(4.7) 

(4.9) 

(4.10) 

(4.11) 

(4 .12) 

(4 .13) 

(4.14) 

To determine b1 we have to examine the right hand side of the equation (4.4), whose 
Fourier expansion is of the form: 

k 

! (3 ) (a, e, m'ljJ ) = 163
) (a, e) + L [ SA3)(a, e) sin n'ljJ + CA3) (a , e) cos n'ljJ], ( 4.16) 

n= l 

where K is a posit ive integer. 
It is not difficult to show that cp) is of the form: 

(4.17) 
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Indeed: 

- The absence of a2 and the presence of b2 in ( 4.17) result from the structure of the 
sum 

u2fx + w ~~ = a2 (cos 1/J · fx - w sin 1/J · fx) + b2(sin1/J · fx + w cos 1j; fx) + ... 

= a2Si (a) sin 1/J - ~b2S1 (a) cos'lj; + ... , ( 4.18) 
a 

where non-written terms do not contain a2 and b2 
- With regard to (2 .6), the absence of br in (4.17) results from the structure of the 

sum: 

(4.19) 

where non written terms do not contain bI. 
Assuming that ci3

\ao , Bo) -/- 0, the constant b1 is chosen as 

( 4.20) 

Continuing the procedure presented, the result in higher approximation is obtained. 
With regard that in the second approximation 

A(a, e) = EA1(a) + E2 A2(a, e) , 

B(a, e) = E
2 B2(a, e). 

The first stability condition (by neglecting the terms of order E2) is 

( 88~1 ) 0 <0 or Si(ao)>O. 

and by neglecting the terms of order E4 , the second stability is: 

5 Example 

(4.21) 

( 4.22) 

As an illustration, consider a self-excited system subjected to an external excitation in 
exact subharmonic resonance of order 1/3: 

x + x = E{h(l - x 2)i: + ecos3t}, 

where l is the own-frequency; h > 0 is intensity of t he self-excitation; e > 0 and 3 are 
intensity and frequency of the external excitation. 
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In the first approximation: 

f(a , 8, 1/; ) = h(l - a2 cos21f; )( -a sin 1/; ) + ecos(31/; - 38) 

= -ha(l - :) sin'lj; + ~ha3 sin31/; + ecos(31/; - 38), 

S1 = -ha(1-:) , A1 = - ~a(1 - :) , C1 = 0, 
- 1 

B1 = - Ci=0, 
2a 

ha3 e 
u1 = -

32 
sin 31/; - S cos(31/; - 38) + a1cos 1f; +bi sin 1/;, a0 = 2. 

In the second approximation: 

1(2) (a , () ' 1/J ) = si2) sin 1/J + c(2) cos 1/J + ~ ha2 a1 sin 31/; - ~ ha2 bi cos 31/; 
4 4 

h2a3 5ha2 

- 3"2 (3 - 2a2) cos 31/; + l6 A1 cos 31/; 

3he ( a 2
) 3h2a5 5hea2 

+ 8 1 - 2 sin(31/; - 8) + l28 cos 51/; - 32 sin(51/; - 38), 

(2) ( 3a2) hea2 1 (2) 1 (2) 
S1 = -h 1- 4 a1 - 32 cos38, A2 = - 2s1 , B2 = -

2
aC1 , 

(2) hea
2 

. h
2
a

5 
8A1 ( 3a

2
) ( a

2
) C1 = T2 sm38 + 

128 
- A1 Ba + hA1 1 - 4 + hb1 1 - Ll , 

sin 380 = _ h
2
a8/hea6 = _ 2h aio = _ hea6 cos 38o/h(l - 3a6) = ecos38o 

128 32 e ' 32 4 16 
3ha2 a10 3ha2 b1 h2a3 (3 - 2a2) 5ha2 

u2 = -
32 

sin 31/; + 
32 

cos 31/; + 
256 

cos 31/; -
128 

A1cos31/;, 

3he ( a
2

) 3h
2
a

5 

-
64 

1 - 2 sin(31/; - 38) -
3072 

cos 51/; 

5hea2 . · 
+ 

768 
sm(51/; - 38) + a2 cos 'lj; + b2 sin 'lj; . 

Substituting a = ao = 2, 8 = Bo, a1 = a10 into j (3) (a, 8, 1f;) and retaining only the first 
harmonic cos'lj; we obtain the equation determining b10 : 

7 9h2 qh 
--ha10b1 - -a10 = 0 or b1 = bio = - - · 

2 8 2e 

The first stability condition is satisfied: S~(ao) = 2h > 0. 
The second stability condition 

8B2(ao , 80) = - 13hea6 cos38o = _ 3hea10 < 0 
88 2ao 32 2 

or a10 > 0. 

Thus, stationary oscillation with large amplitude J(ao + rnt0)2 + (c:b10) 2
, 

e Kh2 at
0 

- + - 1 - - 2 is stable; that with small amplitude namely, that corresponding 
16 e 

eFW:h2 to a}0 = - - 1 - -
2 

, is unstable. 
16 3 ' 
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6 Conclusion 

The variant of t he asymptotic procedure presented in [2, 3] can be used to examine oscil­
lating systems in a special case . The structures of t he equations of stationary oscillation 
in t he first three approximations have been analyzed. The solution of order O(c:) and O(c:2 ) 

are obtained in the second and t hird approximation , respectively. The stability condit ions 
are simple enough . 

This publication is completed wit h the financial support from T he Council for 
Natural Science of Vietnam. 
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...... ,.._ X ,J ) '- A A 

VE MQT BIEN THE CUA TRINH TT} TI~M CAN 

(TRUONG HOP DAC BI:¢T) 

Bien the ciia tr' mh .t rti~m c~n trlnh bay & [2 , 3] dU'Q'C ap d\mg de khao sat h~ dao 
d()ng & trn&ng hqp d~c bi~t . Cau true cac phucmg trlnh dao d()ng dung duqc phan ti'.ch. 
Nghi~m sai kem O(c:) va O(c:2 ) dm;rc tuang ling xac ~nh & xap xi t hu hai va thu ba. Cac 
dieu ki~n on ~nh kha dan gian. 

147 




