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THE METHOD OF DETERMINING INTERNAL 
FORCES AT ANY CROSS SECTION OF 

LINKS IN MECHANISMS 
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Hanoi University of Technology 

ABSTRACT. In the paper it is introduced a method of determining internal forces at 
any cross section of the links of mechanisms. As known, so far it is used the method of 
D'Alembert , which consists of two steps, the determination of the acceleration states of 
links and the establishment of the equilibrium equations for the set of forces including the 
forces of inertia and the internal forces at the cross section. A. I. Lurie proposed a method 
of analytical mechanics for this problem. Its concept is to make a new system called the 
released one by cutting the link at a cross section under consideration and adding some 
coordinates . Only one condition putting restriction on the released system is the additional 
coordinates must equal zero. Under this restriction the new created system is coincided 
to the original one. This restriction is equivalent to put the mechanical constraints, whose 
reaction forces are the components of internal forces at t he cross section under consideration. 
It is necessary emphasize that the Lurie's method is convenient only for opened loops, but 
is not applied for closed ones. Moreover, the Lagrange's multiplier equations applied by A. 
I. Lurie are unsuitable. In this paper it is presented the generalized Lurie's method, which 
is applied for the opened and closed loops by using the Principle of Compatibility. 

1 Introduction 

The problem of determining internal forces at any cross section of links of mechanism is 
very important because in modern dynamics the cross section of links is designed increas­
ingly small while their angular velocities are more and more larger. 

In t he past, for determining the components of internal forces (the tensible, shearing 
force and bending moment) the D 'Alembert 's method is applied. For doing this , first it 
is necessary to determine the acceleration state of links and next to write the equilibrium 
equations for the set of forces in included the forces of inertia. 

Lurie A. I. proposed the method for simultaneously determining the acceleration state 
and components of internal forces [8]. 

The idea of the Lurie 's method is to make the system called t he released one by cutting 
the link at a cross section and three new coordinates are introduced. Only one condition 
putting restriction on the released system: the addition coordinates must equal zero. 
By annulling addition coordinates we get the equations, which are treated as constraint 
equations . The reaction forces of these constraints just are the components of internal 
forces at the cross section under consideration. The idea of the Lurie 's method is excellent . 
However this method is not applied for closed loops due to hardly choosing the independent 
coordinates. 

In this paper by using the Lurie's method together the application of the -Principle of 
Compatibility the components of internal forces at any cross section of links of mechanism 
are determined. 
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2 The method of determining the components of internal 
forces at any cross section of links 

Let us consider a closed plane loop of n degree of freedom (Fig. I). The number of inde­
pendent coordinates of this system is equal to n . 

y 

0 

Fig. 1 

However, the choice of independent coordinates is uncomfortable for dynamic investi­
gation, for example, in the calculation of kinetic energy and etc, ... 

Let us choose the coordinates qj (j = 1, m) . Of course, between the chosen coordinates 
qj (j = 1, m > n) there exist the constraint equations: 

(2.1) 

In order to apply the Lurie 's method it is necessary to release the hinge B and to 
put the components of XB , YB reaction forces, which are treated as the applied forces to 
mechanism. 

By such a way we get an opened loop. The number of coordinates of this system is 
equal to ( m + 2) , that are {qi , q2 , . .. , qm , x, y}, where x, y are coordinates of the hinge B. 
The obtained system is restricted by the constraints (2.1) and the constraints of the form. 

X - 91(1]1, q2 , · · ·, qm) = 0, 

Y - 92(q1, q2, · · · , qm) = 0. 
(2.2) 

These constraints belong to the conventional constraints (the programmed constrains) 
[1, 2, 5, 7] . 

Let us apply the Lurie 's method for the opened system obtained. By cutting the link 
under consideration at the defined section. By such a way the system is separated into 
two parts (Fig. 2). In order to define the position of the system three coordinates u, v, w 
are introduced, which are called the addition coordinates. 

The cutted system will be identical with the original system if the following conditions 
are realised 

u = 0, v = 0, w = 0. (2.3) 

The restrictions (2.3) are treated as constraints, but their reaction forces just are the 
components of internal forces at the cross section under consideration, which one after 
another are the tensible, shearing forces and bending moment. 
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Denote the H:inetic energy of the cutted system and the generalised forces by T , Q j (j = 
-- I --
1, m), Qx, Qy , Qu , Qv , Qw respectively, but t he reaction forces by Rj (j = 1, m), Rx, Ry, 
Ru, Rv , Rw respectively. 

By following the Principle of Compatibility [3] , we write the equations of the cutted 
system in the folrm 

d 8T0 8T0 
0 

dt 8qj - 8qj = Q j + Rj ' (2.4) 

d 8T0 8T0 
0 

dt OX - OX = Qx +Rx, 

d aT0 aT0 o 
dt oiJ - ay = Q y + Ry' (2.5) 

d (f)T)O (8T)O 0 
dt au - au = Q u + Ru' 

d (8T)O (f)T)O 0 
dt av - av = Q v + Rv' (2.6) 

d (8T)O (8T)O 0 
dt OW - OW = Qw + Rw' 

where the symbol ( )0 means that the quantities u, v, w in the bracket must be took the 
zero value. 

The reaction forces Rj (j = 1, m) , Rx , Ry, Ru , Rv, Rw must satisfy the condition of 
ideality of constraints . For getting this condition let us choose the quasi-accelerations [3, 
6, 8], for example, qi (i = 1, n), x , y and write the expression of accelerations in terms of 
quasi-accelerations by using the given constraint equations, that are 

I 
q1 = lq1 + Oq2 + ... .. .. .... .. .. .. ....... ...... ....... ..... + Oqn + Ox + Oy + ........ . 
q2 = Qq1 + lq2 + .... ....... .. .... ... ..... ............. .... + Oqn + Ox+ Oy + ........ . 

x = O(j1 + Oq2 + ·· ·· ··· ··· ·· ··· ······ ········· ····· ···· ·'· + Oqn + lx + Oy + .... . 
j) = Oq1 + Oq2 + ... ....... ......... .... ......... ... ....... + Oqn + lx + ly + .... . 
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.. - k ·· k ' ·· k ·· k (x) ·· k(y) ·· 
qn+l - n+l ,lql + n+i ,2q2 + ··· + n+l,nqn + n+l X + n+l Y + ···· · (2 .7) 

·· k ·· k ·· k ·· k(x) ·· k(y) ·· 
qn+2 = n+2,1q1 + n+2,2q2 + ··· + n+2,nqn + n+2X + n+2Y + ··· ·· 

q~ = km ,lQl + km,2Q2 + ........ ..... ... . + km,nQn + k~) x + k~) jj + .... . 
ii, = Oih + Oij_2 + ... ........ .... ............ ..... ..... ... .. + Oij_n + Ox + Ojj + ... . . 
v = Oq1 + Oq2 + ..... ..... ........ ...... ........ ... ... .... + Oqn + Ox + Ojj + .... . 
w = Oq1 + Oij_2 + ... ........ .......... ..... .. ..... .... ..... + Oqn + Ox + Ojj + .... . , 

where the non-written terms do not contain accelerations , but the coefficients kai 

(a = n + 1, m , i = 1, n) , k~x), k<t ) (a = n + 1, m) are the known functions of coordinates. 
From here we get the matrix D 

m - n 

kn+l ,l kn+2,l · · · · · · km,l 
n 2 

...-'---.. ,,-"-.. 
1 0 . .. 0 0 0 

kn+l ,2 kn+2,2 · · · · · · km,2 

0 1 · .. 0 0 0 
. .. .. ... . 

D = . . . . . . . . . 
kn+l ,n kn+2,n · · · · · · km ,n 

0 0 ... 1 0 0 

{~ 0 ... 0 1 0 k(x) k (x) 2 ..... . k~) 
n~l n+ 

0 ... 0 0 1 k (y k (y) 2 ... .. . k~) 
n+l n+ 

The condition of ideality of constraints is of the form 

DR = O, 

where 

3 __..._, 
0 0 0 

0 0 0 

.. . . ..... 

0 0 0 

0 0 0 

0 0 0 

R T= llR1 ···· · ·Rm R x Ry Ru R v Rwll · 
By (2.9) we obtain 

m 

R i + L kaiRa = 0, i = 1, n, 
a=n+l 

m 

R x + L k~x) Ra = 0, 
a=n+l 

m 

Ry+ L k<t) R a = 0. 
a=n+l 
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In consideration of (2.4), (2.5) and (2.6), the equations (2.11) are written in the form: 

d aT0 aT0 m ( d aTO aTO 
dt -aq" - aq· - Q? + L k~i dt ~ - a - Q~) = o, i = 1,n. 

i i a=n+l qa qa 
(2.13) 

These equations together with the constraint equations (2 .1) and given initial condition 
will describe the motion of the original system. 

Let us now return to the equations (2 .12). It is necessary to emphasize. The constraints 
(2.2) belong to the conventional constraints (the programme constraints). This means that 
their reaction forces are identical to zero [1, 7] . Therefore we have 

m 0 0 
'""' k(x )O (~aT - aT - Qo) = 0 
L... a dt a. 8 a ' 

a=n+l qa qa 

m ~ O ~ 0 
'""' k(y)O(~~ - :!!____ - QO) = 0. 
L.., a dt oq oq a 

a = n + l a a 

(2.14) 

It is noticed that the components of the reaction force of the hinge B belong to the 
applied forces. This means that these action forces are included in the expressions of the 
generalised forces Q~ (a= n + 1; m). Due to this from (2.14) it is to allow us is calculate 
the components XE and YB of the reaction force of the hinge B. 

As known, t1ie reaction forces of the constraints (2.3) just are the components of the 
internal force at the cross section. 

These components are found from (2.6). That are 

d (aT)O (aT)O 0 
Ru = dt au - au - Q u' 

d (aT)O (f)T)O 0 
Rv = dt av - av - Q v' (2 .15) 

d (aT)O (aT)O 0 
Rw = dt aw - aw - Q w' 

which one after another the tensible, shearing forces and bending moment at the indicated 
cross section. 

3 Examples 

Example 1. Let us determine the bending moment at the cross section located at the 
distance a with respect to the end A of the link AB of the slider-crank mechanism. The 
crank moves under action of the moment M of the motor, but the slider-the force F. The 
length of the cralnk and transmission link are r and l respectively. For raison of simplicity 
the mass of the 1transmission link and the friction are neglected. · The mass center of the 
crank is coincided with the axis of rotation, but the mass of the slider is of m [Fig. 3]. 

First we make the free system by applying the axioms of constraints for the slider B 
by releasing it from slide-way. The reaction force from the slide-way acting on the slider 
is denoted by N, which is included in the applied forces acting on the system. By such a 
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way the applied forces acting on the system consist of M , F, P and N, where P is the 
weight of the slider, lo-the moment of inertia of the crank about the axis 0. 

y 

x x 

Fig. 3 

In order to calculate the bending moment at the indicated section let us to make the 
cutted . system and the generalised coordinates <p, 'ljJ, e, y are chosen as in Fig. 3. The 
addition coordinate is e . The constraint equations are of the form 

Ji= r 1s<p - as(<p + 'lj;) - (l - a)s(<p + ij; + e) - y = 0, 

h = e = o. 
Here and afterwards , the following symbols are used: cos <p = crp, sin <p = sip. 

First let us calculate the kinetic energy of the system, which is of the form 

T = ~Jo<P2 + ~m(x2 + i/). 
2 2 

The coordinates x , y of the slider have the expressions 

x = rc<p - ac(<p + 'lj;) - (l - a)c(<p + 'ljJ + e) , 

y = rs<p - as(<p + 'lj;) - (l - a)s(<p + 'ljJ + e). 

By deriving the obtained expressions we have 

x = [-rs<p + as(<p + ij;) + (l - a)s(<p + ij; + B)]<P 

+ [as(<p + ij;) + (l - a)s(<p + 'ljJ + B) J1f + (l - a)s(ip + ij; + e)iJ , 
iJ = [rc<p - ac(<p + 'lj;) - (l - a)c(<p + 'ljJ + e)]<P 

- [ac('P + 'lj;) + (l - a)c(ip + 'ljJ + B)J1f + (l - a)c(<p + 'ljJ + e)iJ. 

The kinetic energy of the system is of the form then 

T = ~Jo<f2 + { [- rs<p + as(<p + 'lj;) + (l - a)s(<p + 'ljJ + B) ]cp 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

- [as(ip + ij;) + (l - a)s(<p + 'ljJ + B)J1f + (l - a)s(<p + 'ljJ + e)e} 2 
+ ~my2 . (3.5) 
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The generalised forces corresponding to the coordinates <p, 1/J, () and y respectively are of 
the form 

Q~ = M + (N - P)[re<p - le(<p + 1f;)], 

Q~ = Fls(zp + 1/J) - (N - P)le(zp + 1/J), 

Q~ = F(l - a)s(<p + 1/J) - (N - P)(l - a)e(<p + 1/J), 

Qy = N -P. 

Let us choofe the quasi-accelerations to be r:p and jj. 
Following (2.7) and (2 .8) the matrix D takes the form 

where 

Therefore 

D = [1 0 kc.p O] 
OlkyO ' 

k = re<p - ae(<p + 1/J) - (l - a)e(zp + 1jJ + ()) 
'P ae(<p + 1/J) + (l - a)e(<p + 1jJ + ()) ' 

k - 1 
Y - ae(<p + 1/J) + (l - a)e(<p + 1jJ + ()) 

ko _ re<p - le( <p + 1jJ) 
'P - le( <p + 1jJ) ' 

ko = 1 
Y le( <p + 1/J) 

It is easy to calculate the following quantities 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

d aT
0 

aT
0 

- J, .. ( ) 
dt 8cp - 8<.p - o<p, 3·10 

d 8T0 8T0 .. . 2 · 2 
dt a;p - 81/J =m[ls(zp+ ?jJ )?jJ - rs<pcp +le(zp+1/J)(<P+1/J) ]ls(zp+1/J) , (3.11) 

d 8T0 8T0 .. 2 · 2 
dt aiJ - {)() =m[ls(zp+1/J)1/J -rs<pcp +le(zp+1/J)(<P+1/J) ](l - a)s(zp + 1/J) . (3.12) 

By applying tlie equation (2 .13) we obtain the equation of motion of the slider-crank 
mechanism, that is 

re<p - le( <p + 1jJ) { .. 
J0<p - M - (N - P)[re<p - le(<p + 1/J)] + m le(<p + 1/J) [ls(<p + 1/J)'ljJ 

- rszpcp 2 + le(<p + ?jJ)(<P + ;p) 2 ]ls(<p + 1/J ) - Fls(<p + 1/J) + (N - P)le(<p + 1/J) } = 0. 

By reducing the obtained result the equation of motion of the slider-crank mechanism 
will be then 

Jorp - M + mre<p - le(<p + 1/J) {[ls(zp + 1/J);f 
le( <p + 1jJ) 

- rs<pcp2 +le(<p+1/J)(<P + ;p) 2]s(<.p + 1/J) - Fs(<p + 1/J)} = 0. (3.13) 
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In order to determine the bending mo_ment let us calculate the reaction force Re , which is 
of the form 

Re = .:!:._ (fJ~)o - (fJT)O - Q~. 
dt 8() 8() 

The expression of the bending moment will be then 

Re =m[ls('P + 'l/J);/; - rstp<iJ2 + lc('P + 'l/J)(<P + ~) 2]( l - a)s('P + 'ljJ) 

+ F(l - a)c(tp + 'l/J) + (N - P)(l - a)s('P + 'l/J). (3.14) 

The reaction force N is found by mean of equation (2.14) that is 

We have then 

m[Zs(tp + 'l/J);/; - rstp<i; 2 + lc( tp + 'ljJ)(<P + ~) 2 ] ls(tp + 'ljJ) 

+ Flc(tp + 'l/J) + (N - P)lc(tp + 'l/J) = 0. 

This equation gives us: 

·· 2 · 2 s(tp+'l/J) 
N = P - m[ls(tp + 'ljJ)'ljJ - rstp<iJ + lc(tp + 'l/J)(<P + 'l/J) ] c(tp + 'l/J) + F. (3 .15) 

It is easy to check the true of the 
obtained results. For this purpose let us 
consider the piece BK (Fig. 4) and apply 
the D'Alembert method by putting the 
force of inertia of the slider B , which is 
equal to -mx. By using the equilibrium 
equation (the moment equation) for the 

set of force: N, P, -mx, Mb , Nt and 
Qsh we get Fig. 4 

F 

Mb = mx(l - a)s('P + 'ljJ) - F(l - a)s(tp + 'ljJ) + (N - P)(l - a)c(tp + 'ljJ), 

where Mb is the bending moment , Nt-the tensile force and Q8 h-the shear force. 
The expression of Mb is coincided with the one of the bending moment Re in (3.14) if 

taking into account the expression x: 

x = ls(tp + 'l/J);/; - rsc.p<i; 2 + lc(c.p + w)(<P + ~) 2 . 

Example 2. Let us determine the components of internal forces at the cross section as 
shown in the example 1. For this purpose let us make the system as in Fig. 5. 
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The generalised coordinates are chosen to be <p , 'lj;, u, v, e, y as in Fig. 5. 
The coordinates of the mass center of the slider are calculated by the expressions 

We have then 

x = rc<p - (a+ u)c(cp + 'l/J ) + vs(cp + 'l/J ) - (l - a)c(cp + 'ljJ + e) , 

y = rscp - (a+ u)s(cp + 'l/J) - vc(cp + 'l/J) - (l - a)s(cp + 'ljJ + e) . 

x = [- rscp +(a+ u)s(cp + 'l/J ) + vc(cp + 'l/J ) + (l - a)s(cp + 'ljJ + e) ]<P 

+[(a+ u)s(cp + 'lfJ) + vc(cp + 'l/J) - (l - a)s(cp + 'ljJ + ())]?,b 

- (l - a)s(<p + 'ljJ + e)e - uc(cp + 'lj;) - vs(cp + '1/; ), 

iJ = [rc<p - (a+ u)c(cp + 'lj; ) + vs(cp + 'lj; ) - (l - a)c(cp + 'ljJ + ()) ]<P 

- [(a+ u)c(cp + 'lj; ) - vs(cp + 'lj; ) + (Z - a)c(cp + 'ljJ + e)] ?,b 

- (l - a)c(cp + 'ljJ + e)e - us(<p + 'l/J) - vc(cp + 'lj;). 

The kinetic energy of the system is of the form 

1 · 2 1 ·2 1 ·2 1 ·2 1 .21 {l T = 2,Jocp + 2mx + 2my = 2Jo<p + 2my 2m - rs<p 

+(a+ u)s(<p + 'lj;) + vc(cp + 'lj;) - (l - a)s(cp + 'ljJ + B)]<P 

+[(a+ u)s(cp + 'I/; )+ vc(cp + 'l/J ) - (l - a)s(cp + 'ljJ + e)] ?,b 

- (Z - a)s(cp + 'ljJ + e)e - uc(cp +'I/;)+ vs(cp +'I/;) r 
The constraint equations will be 

y - rscp +(a+ u)s(cp + 'l/J) + vc(cp + 'lj;) + (l - a)s(cp + 'ljJ + e) = 0, 

u = 0, 

v = 0, 

() = o. 
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The generalised forces are of the form 

Q~ = M + [rc<p - lc(<p + 1/;)](N - P), 

Q~ = Fls(<p + 1/; ) - (N - P)lc(<p + 1/;), 

Q~ = - Fc(<p + 1/;) - (N - P)s(<p + 1/;) , 

Q~ = -Fs(<p + 1/;) - (N - P)c(<p + 1/;) , 

Qg = - F(l - a)s(<p + 1/;) - (N - P)(l - a)c(<p + 'lj;). 

In order to calculate the matrix D let us choose the quasi-accelerations to be rp and jj. 
The matrix D takes the form 

D = [1 0 k'P 0 0 OJ 
OlkyOOO' 

where the coefficients kcp and ky are of the form 

k = rc<p - (a+ u)c(<p + 1/;) + vs(<p + 1/;) - (l - a)c(<p + 1f; + e) 
'P (a+ u)c(<p + w) - vs(<p + 'lj! ) + (l - a)c(cp + 'lj! + e) ' 

k - - 1 
Y - (a+ u)c(<p + 1/;) - vs(<p + ?/;) + (l - a)c(<p + 1f; + e) 

We have then 

ko = rc<p - lc(<p + ?/; ) 
'P lc(<p + 1f;) ' 

ko = 1 
Y lc(cp + ?/; ) 

It is easy to see that the relations (3.10) , (3 .11) and (3.12) are st ill true. Therefore the 
equation of motion is still of the from (3 .13) , the expression of the bending moment (3.14) 
and the reaction force of the slide-way acting on the slider (3.14) . 

In order to calculate the tensile and shear forces let us use first two equations of (2 .15) . 
For this purpose we calculate the following expressions: 

d (aT)O (aT)O .. 2 · 2 dt a~ - a'lj; = - m [ls( <p + ?/; )?/; - rs<pcp + lc(<p + 'lj; )(<P + 'lj; ) ]c(<p + 'lj; ), 

d (aT)O (aT)O .. 2 · 2 dt av - av =m[ls( cp + 'lj! )'lj! - rs cpcp +lc(cp + 'lj! )(cp + 'lj! ) ]s(cp+'lj;). 

The tensile and shearing forces are calculated by the following formulas 

d(aT)O (aT)O 0 .. 2 · 2 Ru= dt au - au - Qu = - m [ls( <p + ?J; )'lj; - rscpcp + lc(<p + ?/; )(<{; + ?/; ) ]c(cp + ?f; ) 

+ Fc( <p + 1/;) + (N - P)s(<p + 1/;), 

d ( aT) o ( aT) o 0 .. 2 · 2 Rv = dt av - av - Qv =m[ls( <p + ?/; )?/; - rs <pcp . + lc( <p + ?J; )(<P + ?/; ) ]s(<p + 'lj;) 

+ Fs(<p + ?/; ) + (N - P)s(<p + ?/;) , 

where the reaction force N takes the value of (3.15). 
It is easy directly to check the true of the obtained results by means of the D 'Alembert 

method. 
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4 Conclusion 

In the paper it is represented the method of determining the components of internal force 
at any cross section of the links of a closed chain. This method is a expanded form of the 
Lurie 's method, which allows simultaneously to determine the reaction force of external 
constraints, the components of internal forces and the acceleration state of the system. 

This public1ation is completed with financial support from the National Basic Research 
Program in Natural Sciences. 
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PHUONG PHAP xAc DINH cAc THANH PHAN N6r Luc 
A U ,_j ' ' o 

0 

,./ 

Th.I MQT Mh.T CAT NGANG CUA THANH TRONG CO CAU 

Trong bai lDao de xuat m(>t phucmg phap xac dinh cac thanh phan n(>i h,rc t0i m~t cat 
cua thanh. Hi~n nay van ae nay dm;rc giai quyet nha phuang phap Dalambe tien hanh 
theo hai giai do0n, xac dinh tr0ng thai gia toe va d~t h,rc quan tfnh, tiep theo 11%p cac 
phmmg trlnh can b[ing cho h~ ll!C gom cac ll!C d~t vao va l\l'C quan tfn,h. Lurie A. I. da 
ae nghi m(>t plillrang phap d\l'a tren y tucmg t00 nen m(>t h~ m&i b[ing nhat cat theo m~t 
cat ngang. De xac ~nh vi trf cua h~ bi cat Lurie da dua vao cac to0 d(> phv va d~t dieu 
ki~n la cac to0 d9 phv phai b[ing kh6ng. Dieu nay tuang duang v&i vi~c d~t cac lien ket 
len h~ bi cat de no chfnh la h~ nguyen cu. Phan l\l'C cac lien ket nay chfnh la cac thanh 
phan n(>i l\l'C t0i m~t cat. 

Phuang phap cua Lurie chi ap dvng thui%n ti~n cho cac chuoi m&, khong ap dvng dm;rc 
cac chuoi dong. Han nua phuang trlnh dm;rc sli- dvng la phuang trlnh Lagrang d0ng nhan 
tli- it hi~u qua. 

Trong bai bao da xay d\l'ng m(>t phuang phap d\l'a tren y tu&ng cua Lurie. Phuang 
phap nay ap dvng cho ca chuoi m& va chuoi dong nha ap dvng Nguyen ly phu hqp. 
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