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ON A VARIANT OF THE ASYMPTOTIC PROCEDURE 
(II: WEAKLY NONLINEAR NON-AUTONOMOUS SYSTEMS) 

NGUYEN VAN DINH 

Institute of Mechanics 

ABSTRACT. A variant of the asymptotic method is proposed to construct steady solution 
of weakly nonlinear non-autonomous oscillating systems. The amplitude and the dephase 
angle of order c0 are used as variables, the uniqueness of the asymptotic expansions is 
assured by stationarity conditions . 

1 Introduction 

In [3] , to determine steady state in weakly nonlinear autonomous oscillating systems, a 
variant of the asymptotic procedure has been proposed, consisting of two modifications: 
- the approximate amplitude a of order c0 of the first harmonic is chosen as variable in 
asymptotic expansions and - the arbitrariness of the latter is removed by initial conditions 
and by stationarity conditions. 

In the present paper, the case of non-autonomous system is considered. Besides the 
mentioned amplitude of order co, the dephase angle e of same order is used as the second 
variable and the additional stationarity conditions are used to assure the uniqueness of 
the asymptotic expansions. It is shows that steady state (stationary oscillation) can be 
successively determined in each step of approximation and the solution obtained is identical 
with that given by the Poincare method. 

2 Systems under consideration. The usual asymptotic 
procedure 

Consider a weakly nonlinear non-autonomous oscillating system described by the differ
ential equation: 

x + w2x = cf(x,±,wt), (1.1) 

where w is the exciting frequency; f(x , x,wt) is a function of (x,x,wt) , 27r-periodic with 
respect to wt; the significations of other notations have been explained in [3]. 

Fc;>r simplicity, f (x, x, wt) is assumed to be a finite Fourier series in t with polynomial 
in ( x, ±) coefficients. 

To be able to make a comparison, the usual asymptotic procedure is briefly recalled [l]. 
First, following asymptotic expansions are used: 

x = acos'lj; + rn1(a, e, 'lj;) + c2u2(a, e, 'lj;) + . .. ' 7f; =wt+ e, 

a= cA1(a, B) + c2 A2(a, B) + . . . , 
. 2 
B = cB1(a,e)+c B2(a,e)+ ... , 
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(1.2) 

(1.3) 

(1.4) 



where a and e are the full amplitude and the full dephase angle of the first harmonic, 
respectively; Ai , Bi (i = 1, 2, .. . ) are functions of (a, B) ; ui (i = 1, 2, .. . ) are functions of 
(a,B , 'lj;), 27r-periodic with respect to 'lj;, do not containing the first harmonics sin'lj;, cos 'lj; . 

Substituting (1.2) into (1.1), using (1.3), (1.4) , expanding the right hand side in Taylor 
series of E, equating the terms of like powers of E yield in the first approximation 

- 2wA1 sin 'ljJ - 2waB1 cos'lj; + w2 (~;21 + U1) = f(l)(a , e, 'l/J ) (1.5) 

= f(acos 'lj; , - wasin'lj;, 'lj; - B). 

Expanding j(l) in Fourier series, that is: 

N1 

1c1)(a, e, 'l/J ) = 161)(a, e) + 2= [s~i)(a, e) sin n'lj; + c~i)(a , e-) cosn'!/JJ, (1.6) 
n=l 

then equating the terms of like harmonics , we obtain: 

- 1 (1) - 1 (1) 
A1(a,e) = -81 (a , e) , B1(a,e) = -C1 (a,e) , (1.7) 

2w 2wa 
fP N1 

w2
(

0
;; +u1) =JJ1l(a ,e)+ L[S~1)(a , e)sinn'lj; +C~1)(a , e)cosn?j;J. (1.8) 

n = 2 

The expression of u1 is of the form: 

N i 

Ui(a, e, 'lj;) = ~2 { fdi)(a, e) - L n2 ~ 1 [s~i)(a , e) sin n'lj; + c~i)(a, e) cos n'l/J ] }· (1.9) 
n = 2 

· The same procedure leads to Ai , Bi , ui in the i th approximation (i = 2, 3, . . . ). 
In the end i.e. in the nth approximation, the full amplitude a* and the full dephase 

angle e* of stationary oscillation are determined by stationarity conditions which are two 
following equations: 

A(a, e) = EA1(a, e) + .. . +En An(a, e) = 0, 

B(a, e) = EB1(a , e) + · ·· +EnBn(a,e) = 0. 

The stability conditions take the form: 

3 A variant of the asymptotic procedure 

(1.10) 

(1.11) 

In this section, a variant of the asymptotic procedure is applied to discuss the problem of 
interest. 

First , in the expansions (1.2) , (1.3) , (1.4), the variables a and e are now understood 
as the amplitude and the dephase angle of order Eo (not the full amplitude and the full 
dephase angle) of the first harmonic. Consequently, the requirement on the absence of the 
first harmonics sin 'ljJ, cos 'ljJ in Ui ( i = 1, 2, 3, ... ) must be rejected i.e. Ui may contain the 
sum ( ai cos 'ljJ + bi sin 'ljJ ) where ai , bi are constants to be chosen. 
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The identity (1.5) retains its form; so, from (1.5) we obtain the same expressions (1. 7) 
of A1(a, B), B1(a , B) and the same differential equation (1.8) governing u1. 

However, since u1 (a,(), 'ljJ) may contain the first harmonics sin 'ljJ and cos 'ljJ, the expres
sion (1.9) - is replaced by 

N 1 
_ __!__ { (1) _ 2= _1 _ [ (1) . u1(a,B,'lj;) - 2 fo (a,e) 2 Sn (a,B)smn'lj; 

w n - 1 
n=2 

+ c~1 l (a, e) cos n'lj; J} + a1 cos 'ljJ + b1 sin 'ljJ (2.1) 

where a1 , bi are constants to be chosen. 
The amplitude and the dephase angle (a0 , Bo) of order c:0 of stationary oscillation are 

immediately determined in the first approximation by the equations 

-1 (1) 
A1(a, B) = - S1 (a,B) = O, 

2w 

In t he second approximation we have 

-1 (1) 
B1(a , B) = - C1 (a , B) = 0. 

2wa 

2 (82
u2 ) - 2wA2 sin 'ljJ - 2waB2 cos 'ljJ + w o'lj;2 + u2 = h(a, e, 'lj;) 

( 
2 8A 8A1) ( 8A1 8B1) . 

= aB1 - A1 oa - B1 ae cos'lj; + 2A1B1 + aA1 oa + aB1 ae sm'lj; 

(2.2) 

82u1 o2u1 82
u1 ( . OU1) 

- 2wA1 o'lj;oa - 2wB1 o'lj;o() - 2wB1 o'lj;2 + uif x + Ai cos 'ljJ - aB1 sm 'ljJ + w o'lj; f x 

= {J62
l(a,e) + aif6(a,e) + b1f6'(a,e)} 

N2 

+ L { [S~2l(a, e) + a1S~(a, e) + biS~(a , e)] sin n'lj; 
n = l 

+ [ C~2l (a, e) + a1 C~(a, B) +bi C~(a, B) J cos n'l/J }· 

Equating the terms of like harmonics , we get: 

A2(a,e) = -l {si2l(a, e) + a1S~(a,e) + biS~(a,e)} , 
2w 

B2(a,B)= - l {ci2l(a, e) + a1C~(a,e) + b1C~(a,e)}, 
2wa 

w2 ( ~
2

:~ + u2) = {f 62
l (a, B) + a1f6( a, B) + bif6' (a, B)} 

N2 

+ L { [S~2l(a, e) + a1S~(a, e) + biS~(a, e)] sin n'lj; 
n=2 

(2 .3) 

(2 .4) 

+ [ C~2) (a, e) + a1 c~ (a, e) + b1 c~ (a, e) J cos n'lj; } . (2.5) 

78 



Note that A2, B2 as u2 remain inderterminate because of the presence of a 1, bi. A question 
arises: how to choose a1 and b1? It is natural to impose on A2, B2 the conditions 

(2.6) 

which are called stationarity conditions (not cA1 + c2 A2 = 0, cB1 + c2 B 2 = 0 and not a, 
b but a= ao, b = bo). In detailed form: 

a1Si (ao , Bo) + b1S~ ( ao, Bo) + si2
l (ao , Bo) = 0, 

(2.7) 
a1 Ci (ao, Bo) + biC~(ao, Bo)+ ci2

\ao , Bo) = 0. 

Assuming that the determinant 

D = (S~ C{ - S{C~)o =I 0, (2.8) 

we obtain: 

(2 .9) 

where 

D - (S(l)c(2) - 5(2lc11 ) D - (S(2lc 1 - S' c(2)) 1 - 1 1 1 1 o, 2 - 1 1 1 1 O· (2 .10) 

Now, with a1, b1 given by (2.8), the expressions of A2 , B2 and that of u1 are fully deter
mined. 

The expression of u2 (a , (), 'lj; ) is : 

u2(a, (), 'l/;) = ~{fd2)(a, ()) + a10f6(a, ()) + b10Ji(a, ())} + a2 cos 'lj; + b2 sin 'lj; 
w 

N2 

- ~2 L n2 ~ 1 
{ [S~2l(a, ()) + a10S~(a , ()) + b10S~(a , ()) ] sin n'lj; 

· n = 2 

(2 .11) 

where a2, b2 are two constants to be chosen. 
In the third approximation, we determine a2 , b2 using the stationaity conditions 

(2 .12) 

(not cA1 + c2 A2 + c3 A3 = 0, EB1 + c2 B2 + c3 B3 = 0 and not aiB but ao, Bo). 
Continuing this procedure, in then th approximation, we determine an- 1, bn- 1 using 

the stationary conditions 

An(ao , ()o) = 0, Bn(ao , ()o) = 0. (2.13) 

It is necessary to insist again that stationarity conditions are not expressed by two 
equations as in the usual asymptotic procedure but by a set of equations 

A1(ao, ()o) = 0, B1(ao , ()o) = 0, 

A2(ao, Bo) = 0, B2(ao , Bo) = 0, 

An(ao, ()o) = 0, Bn(ao, ()o) = 0. 

Also note that the expressions of Ai(a, ()), Bi(a , ()) (i = 2, 3, .. . , n) . differ from the corre
sponding ones in the usual asymptotic procedure. 

The stability conditions take the same formal form (1.11) given on Section 1, (a* , ()* 
must be replaced by ao, ()o) . 
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4 Comparison with the Poincare method 

As in [3], let us compare the variant presented in Section 2 with the Poincare method. 
Following the latter, the dimensionless time T = wt is introduced and the differential 
equation (1.1) is written as: 

w2(x 11 + x) = cf (x, wx', T) , 

where primes denote derivation with respect to T . 
Expanding x ( T) in powers of c, that is: 

t hen equating t he terms of like powers of c in both sides of ( 3.1) yield: 

w2 (x~ + xo) = 0, 

w2 (x~ +xi) = f(xo, wx~ , T), 

w2 (x~ + x - 2) = xifx(xo , wx~, T) + wx~f:r(xo, wx~ , T), 

The general solution of (3 .3) takes the form 

xo = ao cos(T +Bo) , 

where ao, Bo are two constants to be determined. 
With regard to (3.6) ,.t he differential equations (3.4), (3.5) become: 

w2 (x~ +xi) = f (ao cos(T +Bo), - wao sin( T + B - 0) , T) , 

w2 (x~ + x2) = xifx(ao cos (T + Bo) , -wao sin(T +Bo) , T) 

+ wix~f:r(a cos(T +Bo), - wao sin( T + Bo) , T) , 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Except the absence of Ai , Bi , A2, B2 , the difference between (3.7), (3.8) and (1.5) , 
(2 .2) is of formal character and consists only in the difference between the notations 

(T + Bo = wt+ Bo -+ 'ljJ, T -+ 'ljJ - Bo , x1 -+ u1 , x2 -+ u2, ( )' = :T -+ : 'ljJ ). However , 

for stationary oscillation Ai = B1 = A2 = B 2 = 0. So, stationary oscillation obtained in 
SeCtion 2 by the variant of t he asymptotic procedure coincides with that determined by 
(3 .7) by the Poincare method. 

5 Example 

As an illustration, let us consider the system: 

x + x = c{h(l - x 2 )i: + ecost} , h = 0.04, e = 0.03. ( 4.1) 
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In the first approximation, we have: 

- 2A1 sin 'l/J - 2aB1 cos '!/J + (~~~ + U1) = f (l )(a , B, 'l/J ) = 

= {esin8-ha(1-:)}sin '!/J +ecos8cos 'lj; +~ha3 sin3'lj; (4.2) 

from which we obtain: 

A1(a,B) = - ~{ e sinB - ha(1 - :
2

) } , B1(a , B) = ~: cosB, 

cJ2u1 1 3 ha3 

B'!/J2 +u1 = 4ha sin3'!/J , u1(a, B,'l/J ) = -
32 

sin3'!/J +a1cos '!/J+ b1sin '!/J . 

By solving the equations 

three st ationary oscillations are determined 

1T 
Bo1 = - 2 , ao1 ~ 2.3028 ; 

1T 1T 
Bo2 = 2, ao2 = 1; Bo3 = 2 , ao3 ~ 1.3028. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4 .7) 

In the second approximation, we have to examine the identity (2 .3) ; for the example 
considered, it has t he form: 

(
EJ2u2 ) 8u1 

+ B'!/J2 + u2 = · · · + uif x + B'l/J fx = 

= ( - ~~
3 

sin 31/J + a1 cos 'lj; + b1 sin 'lj; J (2ha2 cos 'lj; sin 'l/J ) 

(
-3ha3 

. ) 
+ 

32 
cos 3'1/J - a1 sin 'l/J + b1 cos 'lj; h(l - a2 cos2 'l/J ) 

= [ ~
2

2~ + b1 ~ ( 1 - ~
2

) J cos 'l/J + a1 ~2 
( 
3~

2 

- 1) sin 'l/J + (higher harmonics) , (4.8) 

where non-written terms do not contain A1, B1, A2 , B2 . 
By substituting a = ao , B = Bo then by vanishing the coefficient of the first harmonics 

cos 'l/J and sin 'l/J in ( 4.8) we obtain: 

a10 = 0, bio = - ha8/64(1- ~6) . (4.9) 

The stability conditions are 

(
8A1 8B1) 2 {h( 3a6) e . } E - + -- + E = E - 1 - - + - Slll ea + · · · < 0, oa oB 0 2 4 2ao 

(4.10) 
2(8A1 8B1 8A1 8B1 3 ) 2( he ( 3a6) . e

2 
2 ) 3 

E aa ae - ae aa + E . . . 0 = E 4ao 1 - 4 sm Bo + 4a6 cos ea + E ... > o. 

It is easy to verify that the stationary oscillation (3 .14) is stable and other two stationary 
oscillations (3.15) are unstable. 
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6 Conclusion 

A variant of the asymptotic procedure is proposed for weakly non-linear non autonomous 
systems. It differs from the usual one by two modifications: 1) the use of the amplitude 
and the dephase angle order c0 as variables in asymptotic expansion, 2) the use of the 
stationarity condition in each step of approximation. The formulas obtained are identical 
with those given the well-known Poincare method. 

This publication is completed with the financial support from The Council for 
Natural Science of Vietnam. 
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MQT BIEN THE CUA TRINH TV TI~M CAN 
(II: TRUCJNG HQP H"¢ PHI TUYEN YEU, KHONG OTONOM) 

M9t bien the ci'ia trlnh t11 ti~m c~n trlnh bay a [3] cho h~ otonom phi tuyen yeu duqc 
ma r(mg va ap d\mg cho h~ khOng otonom phi tuyen yeu. Bien c19 va pha a cap c0 duqc 
dung lam bien cho khai trien ti~m c~n va ti'.nh dung duqc SU dvng de dam bao tfnh duy 
nhat cua khai tri~n. Dao d(mg duqc xac d~nh dan a tlrng bu&c cua trlnh t\l' ti~m c~n. 
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