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ON THE EXISTENCE OF PERIODIC SOLUTION 
OF SOME QUASILINEAR DIFFERENTIAL 

EQUATIONS WITH IMPULSES 

1 Introduction 

LE LUONG TAI 

Thai Nguyen University 

As for ordinary differential equations, one of the problems that especially attract the 
attention of many mathematicians is the problem on the existence of periodic solutions 
of the differential equation systems with impulses. In this paper , we study the periodic 
solutions of the equation system under of the form: 

± = A(x, t) x + F(t , x), t-::/= Ti, (1.1) 

~xlt=r; = Bi(x)x + ci(x), (1.2) 

Bi+p(x) = Bi(x), Ci+p = ci(x), p - integers, i = 1, 2, ... , (1.3) 

where A(t, x), Bi(x) are n x n-matrices, F(t, x), ci(x) are n-vector, the elements of which 
are continuous with respect to its variables (piecewise continuous with the first kind dis
continuities in t at t = Ti) and T-periodic with respect to t. 

In the case of ordinary differential equations, this problem was discussed by A. G. 
Kartsatos [1], S. Saito and M. Yamamoto [2]. Here this result will be extended to the case 
of ordinary differential equations with impulses. 

Together with the system (1.1) and (1.2), we consider the homogeneous linear differ
ential equation system with impulses 

± = Ao(t)x, t-::/= Ti, 

~x ft=r; =Bf x , Bf+P =Bf , i = 1, 2, .. . , 

where A0 (t) is a continuous T-periodic int matrix; Bf are the constant matrices. 

(1.4) 

(1.5) 

The following symbols are introduced. We denote by II · II a norm of a vector or matrix, · 
and by the symbol 11 · llo a supremum norm of vector or matrix function respectively. For 
example, for the vector function <p(t) and the matrix function A(t) we have 

llcp(t)llo = sup llcp(t) ll, 
tE[O,T] 

llA(t)llo = sup llA(t)ll. 
tE[O,T] 

Two of following problems will be solved in this work: 
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Problem 1. Suppose that the system (1.4) and (1.5) does not have nontrivial T-periodic 
solutions i.e. Ho = E - X 0 (T) has an inverse matrix H0

1
. The question here is that in 

what conditions the system of equations 

i: = A(t)x, t-::/= Ti, 

.6.xlt=Ti = Bix , Bi+p = Bi, i = 1, 2, ... 

(1.6) 

(1. 7) 

also does not have nontrivial T-periodic solutions, i.e. H = E - X (T) has an inverse 
matrix H - 1 , where X 0 (t) and X(t) respectively are the matriciants of the system (1.4), 
( 1. 5) and of ( 1. 6) , ( 1. 7) ? Moreover, under what conditions that the T -periodic vector 
function f ( t) and vectors Ci , should be satisfied the corresponding non homogeneous linear 
equation system 

i: = A(t)x + f(t) , t-::/= Ti, 

.6.xlt=ri = Bix + ci, Bi+p =Bi, ci+p = ci , i = 1, 2, .. . 

has a T-periodic solution that belongs to the region llxll :S h. 

(1.8) 

(1.9) 

Problem 2. Using the assumptions stated in Problem 1 for the system (1.4), (1.5), let 
us examine under what conditions the equation system ( 1.1) , ( l. 2) , ( 1. 3) has a T -periodic 
solution. 

Before giving out statements of the main results of the work, some fundamental knowl
edges on periodic linear differential equation system with impulses of the form (1.6), (1. 7) 
are presented and some symbols to be used afterwards are introduced as follows 

1) The equation system (1.6) and (1.7) has a fundamental matrix of solutions X(t): 

where 0 :S to :S Ti < Tk < t :S Tk+ l i and U(t , s) is a solution of Cauchy problem 

dU dt = A(t)U, U(s , s) = E. 

For the differential equation with impulses the matrix X(t) , that X(to) = Eis also called 
a matriciant of the system. 

2) When investigating the problem on the existence of periodic solutions, in the general 
case let use the operator 

V(x( .)) = x(O) - x(T) , (1.10) 

and in the case of the linear differential equations, we apply the operator 

H = I-X(T) . (1.11) 

For the solution x(t) , x(to) = x0 of the linear differential equations, the operator V(x(t)) 
becomes 

V(x(t)) = H xo. (1.12) 
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Consequently, if <let H #- 0 we obtain also 

(1.13) 

3) The following symbols will be used 

T P P 

K = exp ( j llAo(s)llds), II Bf II = f3i, II (1 + f3i) = L , II (1+ f3i+81) = L1 , 
0 i= l i=l 

p 

II (E + Bf) - 1 II = £i, II (1 + f3i £i) = M, (1.14) 
i = l 

4) In this paper, the system (1.4) and (1.5) are taken into the system to compare 
with considered systems. It is assumed that , t he system (1.4) and (1.5) does not have 
T-periodic nont rivial solutions. In connection with t his system, indexes 0 are added to 
symbols as subscripts. Thus, we have 

t 

Xo(t) = E + j Ao(s)Xo(s)ds + L Bf Xo(Ti), 
0 O<Ti<t ' 

T 

X0
1 (t) = E - j X 0

1 (s)Ao(s)ds - L X0
1(Ti)Bf [(E + Bf) - 1

]. 

0 O<Ti<t 

By using extended Gronwall inequality [3], we get 

llXo(t)ll:::; LK, X0
1(t):::; MK. (1.15) 

Moreover, if the system (1.4), (1.5) does not have nontrivial T-periodic solutions, t hen 
Ho =I - Xo(T) has an inverse matrix H01 [2] and, a positive number p, 0 < p < 1 can 
be chosen such t hat 

(1. 16) 

2 The main results 

Theorem 1. Suppose that A(t) and f (t) correspondently are T-periodic, piecewise con
tinuous with the first kind discontinuities in t at t = Ti matrix and vector functions , B i, 
Ci correspondently are the constant matrix and vector. Moreover, the matrices A(t) , B i 
satisfy the inequalities 

llA(t) - Ao(t) 11 :::; 8, II B i - Bf II :::; 81, (2.1) 

with 8, 81 satisfi ed the inequality 

M L2 K 3 (T6 + p61 )(1 + LM K 2 61)P exp(M LK2T6) < p 1 , (2.2) 
- 2llHo II 
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where 0 < p < 1. If the equation system (1.4), (1.5) does not have nontrivial T-periodic 
solutions, then 

i) The matrix H = E - X(T) has an inverse matrix H - 1 that satisfies the condition 

(2 .3) 

ii) For every T -periodic, piecewise continuous with the first kind discontinuities at 
t =Ti vector function f (t) and ci, i = 1, 2, . .. , p, that satisfy the condition 

N < p(l - p)h 
- [2L1M1K2 exp(T8) + p( l - p)]L1K exp(T8) ' 

(2.4) 

{ 
T P } 

where N = max J llf(s)llds, I: ll cill , the equation system (1.6) , (1.7) has a T-periodic 
0 i=l 

solution x(t) that satisfies the inequality ll x(t)l l ::; h. 

In order to obtain the statement of the second result , some supplement assumption 
are needed. Suppose t hat A(t, x), Bi(x) are n x n matrices given in the introduction that 
satisfy the condit ions 

llA(t, x) - Ao(x) ll :::; 8, llBi(x) - Bf II :::; 81, 

T P 

max ( J llF(t, x(t))lldt, L llci(x(t))l l) :::; N , 
0 i=l 

(2.5) 

where t ER, llx(t)ll :::; h; 8, 81 are the positive constants given in (2.1) and N shown in 
(2 .4) . 

Theorem 2. Suppose that the equation system (1.4) , (1.5) does not have nontrivial T
periodic solutions. Moreover, the differential equation system with impulsive effects (1.1), 
(1.2) satisfies conditions (2.2) , (2 .5). Then the differential equation system with impulsive 
effects ( 1.1), ( 1. 2) has at least one T-periodic solution. 

3 Proof of Theorems 

The proof of Theorem 1 
i) The equation system (1.6) , (1.7) can be rewritten according to the compare 

system (1.4), (1.5) as follows 

dX(t) 
---;ft = A0 (t)X(t) + [A(t) - A0 (t) ]X(t) , Vt -::f. Ti , 

~Xlt=Ti =Bf X(Ti) + [Bi - Bf ]X(Ti)· ' 
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Consequently, the matriciant of this system is of the form 

t 

X(t) = Xo(t) + Xo(t) j X0
1 (s)[A(s) - Ao(s)]X(s)ds + 

0 

+ L Xo(t)X01(Ti + O)[Bi - B2JXh) . 
O<Ti<t 

After some uncomplicated transformations and by applying the extended Gronwell in
equality, we obtain 

From (1.14), (2.3) we have 

ll(Ho - H)xoll = llV{Xo(t) - X(t)}xoll :S 2llXo - Xllollxoll :S ll~_ 111 ilxoll · (3.2) 

As consequence of the inequalities (2.1) and (2.3), it follows 

Pllxoll 2 llH0-111 ll(Ho - H)xoll 2 llxoll - llH01ll 11Hxoll 2 llxoll - llHxoll, 
p 

for all x E Rn. Hence 

llHxoll 2 p(l - p)llxoll, for all xo E Rn. 

From here, it infers the existence of t he inverse matrix H - 1 , and the inequality (2.3) holds. 
ii) Every solution of the system of equations (1.6) , (1. 7) can be written in the following 

form · 

t t 

x(t) = -H- 1 [V(p(t))] + j A(s)x(s)ds + j f(s)ds + L Bix(Ti), (3.3) 
o o O< t 1 <t 

where 

t 

p(t) = X(t) J x -1(s)J(s)ds + I: X(t)X - 1(Ti + O)ci· 
0 O<Ti<t 

It is estimated llX(t)ll and 11x-1(t)ll · We have 

t 

X(t) = E + J A(s)X(s)ds + I: BiX(Ti)· 
0 O<T;<t 

After some uncomplicated calculations, we obtain 

llX(t)ll :S L1K exp(JT). 
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For the matrix llX- 1(t)il we have 

Note that 

t 

x - 1(t) = E - J x -1(s)A(s)ds - L x - 1h)Bi(E + Bi) - 1. 
0 O<Ti<t 

II Bill :S llB211 + llBi - B211 :S f3i + 81, 

E + Bi = E + B? + (Bi - B?). 

According to [4] given, the following estimation is obtained 

ll(E + B·)-111 < ll(E + Bo) - 111 + ll(E + Bp) -
1

ll
2

llBi - B?ll < f + e;r51 
i - i 1 - ll(E + B?) - 111 llBi - B?ll - i 1 - fir51 

By applying the extended Cronwell inequality, the matrix llX- 1(t)11 is satisfying the in
equality 

11x-1 ( t) II s; .a (I + £,~~ ;.:i)) K exp(T5) ~ M1K exp(T5). 

We find the estimation for llPll · We have 

T P 

llPll :S llX(t)ll j 11x- 1(s)ll llf(s)llds + L llX(t)ll llX- 1h + O)ll lhll, 
0 i=l 

T P 

llPll :S LiM1K2 exp(Tr5) j llf(s) lids+ L1M1K2 exp(Tr5) L llcill :S 2L1M1K2 exp(T8)N. 
0 i = l 

(3.4) 

From (3 .3) we can write 

T T P 

llx(t)ll = llH- 111 ll[V(p(t)Jll + j llA(s)ll llx(s)llds+ j llf(s)llds+ L llBill llx(Ti)ll 
0 0 i = l 

T 

::; 
2L1M1~2 

exp)(T<5)N + N + j (llAo(s)ll + r5)llx(s)llds + t (llB211+81)xh). 
p 1- p ·- 1 

0 ~ 

Applying the extended Cronwell inequality, we obtain 

llx (t)ll :S 2L1M1K2 :~~~;) + p(l - p) Nil (1+!Ji +81) x K exp(T8) 

_ 2L1M1K
2 

exp(Tr5) + p(l - P) NL K (T8) (3.5) 
- p(l-p) 1 exp . 

Since (2.4), it follows that llx(t) II :S h. 
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The Proof of the Theorem 2 
Suppose that the functions <p(t) are piecewise continuous, T-periodic with respect tot 

(t ER) with the first kind discontinuities at t = Ti, i = 1, 2, ... and belong to the sphere 
sh= {'P(t): ll'P(t)ll::::; h} . 

Let us consider the mapping Frp defined by the form 

Frp = - H - 1 [V(PA,F(t))] + PA,F(t), 
t 

PA,F(t) = XA(t) J X,41 (s)F(s, <p(s))ds + °2: XA(t)X,4 1h + O)ci. (3 .6) 
0 O<Ti<t 

We show that F maps the sphere Sh into itself and continuous. Indeed , since (2.2), (2.5), 
we get 

T P 

max(/ llF(t,<p(t))lldt,I: llci(rp(Ti))ll) :SN. 
0 i=l 

Thus, the matrices A(t, <p(t)), Bi(<fJ(Ti)) and the vectors F(t , <p(t)) , ci('Ph)) satisfy all 
conditions of the Theorem 1, therefore, the vector-functions F<p are also T-periodic in t, 
t E R piecewise continuous and belong to the sphere Sh i.e. F<p E Sh. 

Now we will prove that the mapping Frp is continuous i.e. it is shown that if the 
sequence <fJk(t) E Sh, k = 1, 2, . .. is uniformly convergent to the function rp0(t) E Sh, i.e. 
ll'Pk(t) - <p5(t)llo--> 0 then the sequence Frpk is also uniformly convergent to the function 
F<p0, i.e. llF'Pk(t) - F<p0(t)llo --> 0. It is clearly that A(<pk(t) , t) , F(<pk(t), t) , Bi('Pk(t)) 
respectively uniformly converge to A(rp0(t), t), F(rp0(t), t) , Bi(<fJ5(t)). 

Denote t hat Xk(t) , X 0(t) respectively are the matriciants of the system of equations 

x = A(<pk(t), t)x , t =!=Ti , 

~xlt=Ti = Bi(if!k(t))x 

and 

x = A(<p0(t) , t)x , t =!=Ti, 

~xlt=Ti = Bi(<fJ5(t))x. 

(3.7) 
(3 .8) 

(3.9) 

(3 .10) 

Similarly to the estimate (3 .1) , the difference llXk(t) - X0(t)llo satisfies the following 
estimation: 

llXk(t) - X5(t)llo 

:S M0L~Kg ( TllA(<pk(t), t ) - A(<p5(t) , t)llo + PllBi('Pk(Ti)) - Bi(<fJ5(Ti))l l) 

x ( 1 + L5M5KJllBi(<fJk(Ti)) - Bi('P5h))llf 

x exp ( M0L0KJTllA(<pk(t) , t) - A(rp0(t) , t)llo) , (3 .11) 
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where L0, M0, K0 are the constants similar to the respective constants introduced in 
(1.14). It follows sequence Xk(t) uniformly converges to the limit matrix Xo(t) ask---+ oo. 

Now, the symbols Hk va H0 are introduced by the forms 

Hence 

therefore llHk - H0ll---+ 0 ask---+ oo. 
According to Theorem 1, there are inverse operators H-,;1 and H01 satisfying the 

condition 

Thus llH-,;1 
- H51 II is approximate to zero fork ---+ oo. 

Note that x-,;1, x51 are respectively the matriciants of the systems of equations 

dX - 1 

---ft- = x-,;1 Ak(t) , t -=F Ti, 

~x-,; 1 lt=T; = x-,;1(t)Bik(E + Bik) - 1
, 

where Ak(t) = A('Pk(t), t), Bik = Bi('Pk(Ti)), and 

dX::- 1 

---if-= x51 A0(t) , t -=F Ti, 

~x51 lt=T; = x51(t)Bio(E + Bio) - 1, 

with A0(t) = A(rp0(t) , t) , Bio= Bi('P0h)). 
Consequently we can write 

t 

X-,;1(t ) = X61(t) - { J X-,;1(s)[A0(s) - Ak(s)]X61(s)ds }x51(t) 
0 

- I: x-,;1h) [(Bik - Bi5)(E + Bi5) - 1 

O<T;<t 

From here it follows that x-,;1(t) uniformly con~erges to x51(t) fork --t 00. 
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From all argument given above, it deduces that the sequence Fr.pk: 

Fr.pk= -Hi;1 [V(PAk,Fk(t))] + PAkiFk(t) , 
t 

PAk ,Fk(t) = Xk(t) J XJ; 1(s)F(s, 1Pk(s))ds + 2::: Xk(t)XJ;1
(Ti + O)ci, 

0 O<Ti <t 

will uniformly converge to F1.p0: 

F<p5 = -H51 [V(PAa,Fo(t))] + PAa,Fo(t) , 
t 

PA0 ,F6 (t) = X0(t) J Xf;1(s)F(s, 1.p0(s))ds + 2::: X 0(t)X(; 1
(Ti + O)c~ . 

0 O<Ti<t 

Thus, the mapping F<p is continuous. To end the proof we will show that the set F Sh in 
the space of T-periodic, piecewise continuous with the first kind discontinuities at t = Ti 

functions given above has a compact closure, i.e. any sequence <p1, <p2 , ... of the set sh 
has a convergence subsequence. Indeed, suppose that { 1.pk} is an arbitrary sequence of Sh· 
This sequence is uniformly bounded and equicontinuous on the interval [O, T1] , and so, by 

Arzela theorem, there is a subsequence { <p~1 )} uniformly convergent on [O, T1] . Consider 

this subsequence on ( T1, T2] we also can select a subsequence { <p1
2

)} uniformly convergent 
on ( T1, T2] · Continuing this process for the intervals ( T2, T3], ( T3 , T4], . . . ( Tp , T] of [O , T] we 

get a subsequence { <p~+l)} uniformly convergent on the whole interval [O, T]. This means 
that, F Sh has a compact closure in considering banach space, so by theorem on existence 
of a fixed point of an operator on a complete normed space, we conclude that F<p has a 
fixed point in Sh, i.e. the system (1) , (2) has at least one T-periodic solution. Therefore, 
the theorem is completely proved. 
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VE ST)' TON T~I NGHI~M TUAN ROAN CUA MQT SO 
PHUONG TRINH VI PHAN TVA TUYEN TINH VOI TAC DlJNG XUNG 

Trong c6ng trlnh nay, ta khao sat bai toan ve sv ton t~i nghi~m tuan hoan cua m9t 
lop cac h~ phucmg trlnh vi phan tva tuyen tinh ch!u tac di,mg xung c6 d~ng 

x = A(x, t)x + F(t , x), t =I= Ti, 

.6.xlt=ri = Bi(x)x + ci(x), 

(1.1) 

(1.2) 

Bi+p(x) = Bi(x) , ci+p = ci (x) , p - nguyen, i = 1, 2, .. . , (1.3) 

Cung v&i (1.1) , (1.2), (1.3) ta khao sat h~ tuyen tinh 

x = Ao(t)x, t =I= Ti , 

.6.xlt=r; = Bfx , Bf+p =Bf, i = 1, 2, . . . , 

(1.4) 

(1.5) 

Da chung minh sv ton t~i nghi~m tuan hoan cua bai toan (1.1) , (1.2), (1.3) neu ve 
phai th6a man nhfrng dieu ki~n dinh luqng xac dinh. 
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