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Abstract. In this paper, the formulation of a new six-node solid–shell element denoted
(SHB6) is proposed. This prismatic element is based on a purely three-dimensional ap-
proach, and hence has displacements as the only degrees of freedom. A reduced inte-
gration scheme is adopted consisting of one-point in-plane quadrature and an arbitrary
number of integration points, with a minimum number of two, distributed along the
‘thickness’ direction. Moreover, in order to enhance its performance and to greatly re-
duce most locking effects, specific projections are introduced based on the assumed-strain
method. The resulting derivation can then be used to model thin structural problems,
while taking into account the various through-thickness phenomena. A careful analysis
of potential stiffness matrix rank deficiencies reveals that no hourglass modes need to be
controlled. However, without assumed-strain method, the element exhibits some shear
and thickness-type locking, which is common in linear triangular elements associated with
constant strain states. After the formulation of the element is detailed, its performance is
assessed through a set of representative benchmark problems illustrating its capabilities
in various situations. More specifically, this prismatic solid–shell element proves to be an
essential complement to the SHB8PS hexahedral element in meshing arbitrarily complex
geometries.
Keywords. solid–shell element shb6, shear and thickness locking, assumed-strain method,
hourglass modes, benchmark problems.

1. INTRODUCTION

Accuracy and efficiency of finite elements (FE) are the main features expected with
the ever-growing resort to FE-based software packages. For the three-dimensional analysis
of structural problems, the development of effective eight-node solid–shell finite elements
has been a major objective over the last decade as revealed by several recently published
contributions [1–5]. However, to be able to mesh complex geometries and with the advent of
free mesh generation tools not generating only hexahedrons, the development of prismatic
solid–shell elements is made necessary. Note that most of the methods developed earlier
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were based on the enhanced assumed strain method proposed by Simo and co-workers [6–
8], and consisted of either the use of a conventional integration scheme with appropriate
control of all locking phenomena or the application of a reduced integration technique
with associated hourglass control. Both approaches have been extensively investigated
and evaluated in various structural applications, as reported in numerous references [9–
15]. This paper presents the formulation of a six-node solid–shell finite element called
SHB6. It consists of a thick shell obtained from a purely three-dimensional approach. The
assumed-strain method is adopted together with an in-plane reduced integration scheme
using a minimum number of two integration points along the thickness direction. The
three-dimensional elastic constitutive law is also modified so that a shell-like behavior is
intended for the element and in order to alleviate shear and thickness-type locking.

Because reduced integration schemes are known to introduce spurious mechanisms
associated with zero energy, an adequate hourglass control is generally needed. An effec-
tive treatment for kinematic modes was proposed by Belytschko and Bindeman [1], with
a physical stabilization procedure to correct the rank deficiency of eight-node hexahedral
elements. As the SHB6 is also under-integrated, a detailed eigenvalue analysis of the ele-
ment stiffness matrix is carried out. We demonstrate that the kernel of this stiffness matrix
only reduces to rigid body movements and hence, in contrast to the eight-node solid–shell
element (SHB8PS), the SHB6 element does not require stabilization. Nevertheless, we pro-
pose modifications, based on the well-known assumed-strain method [1], for the discrete
gradient operator of the element in order to improve its convergence rate.

Indeed, as revealed by numerical evaluations of the SHB6 element, its original
displacement-based version, without modification of its discrete gradient operator, suf-
fered from shear and thickness locking. To attenuate these locking phenomena, several
modifications have been introduced into the formulation of the SHB6 element following
the assumed-strain method adopted by Belytschko and Bindeman [1]. Finally, a variety
of popular benchmark problems has been performed and good results have been obtained
when compared to other triangular-based elements available in the literature. In particu-
lar, it is shown that this new element plays a useful role as a complement to the SHB8PS
hexahedral element, which enables one to mesh arbitrary geometries. Examples using both
SHB6 and SHB8PS elements demonstrate the advantage of mixing these two solid–shell
elements.

2. FORMULATION OF THE SHB6 FINITE ELEMENT

The SHB6 element is a prismatic continuum shell, based on a purely three-dimensional
approach, with six nodes and only three displacement degrees of freedom per node. It is
provided with a special direction called the ‘thickness’, normal to the mean plane of the
triangle. A reduced integration scheme is adopted with at least two integration points
along the thickness direction and only one point in the in-plane directions. Figure 1 shows
the SHB6 reference geometry as well as the location of its integration points.

2.1. Kinematics and interpolation

The SHB6 is a linear, isoparametric element. Its spatial coordinates xi and dis-
placements ui are respectively related to the nodal coordinates xiI and displacements uiI
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through the linear shape functions (N1, N2, ..., N6) as follows:

xi = xiINI(ξ, η, ζ) =

6
∑

I=1

xiINI(ξ, η, ζ),

ui = uiINI(ξ, η, ζ) =
6

∑

I=1

uiINI(ξ, η, ζ)

(1)

Hereafter, unless specified otherwise, the implied summation convention for repeated
indices will be adopted. Lowercase indices i vary from one to three and represent spatial
coordinate directions. Uppercase indices I vary from one to six and correspond to element
nodes. The tri-linear isoparametric shape functions NI are:

N (ξ, η, ζ) =
1

2
[(1 − ζ) (1 − ξ − η) (1 − ζ)ξ (1− ζ)η

(1 + ζ)(1− ξ − η) (1 + ζ)ξ (1 + ζ)η]
ξ = [0, 1] ; η = [0, 1− ξ] ; ζ = [−1, 1]

(2)

Fig. 1. Reference geometry of the SHB6 element and example of quadrature using
two integration points

2.2. Discrete gradient operator

Using some mathematical derivations, similarly to the procedure for the SHB8PS
development reported in [16], we can explicitly express the relationship between the linear
part of the strain field and the nodal displacements. Combining Eqs. (1) and (2) leads to
the following expansion for the displacement field:







ui (ξ, η, ζ, x, y, z) = a0i + a1ix + a2iy + a3iz + c1ih1 + c2ih2

i = 1, 2, 3
h1 = ζη, h2 = ζξ

(3)

Evaluating this last equation at the element nodes yields the following three six-
equation systems:

di = a0is + a1ix1 + a2ix2 + a3ix3 + c1ih1 + c2ih2 ; i = 1, 2, 3 (4)
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where the six-component vectors di and xi respectively denote the nodal displacements
and coordinates, and vectors s and hα (α = 1, 2) are given by:







sT = ( 1, 1, 1, 1, 1, 1)
h

T
1 = (0, 0,−1, 0, 0, 1)

hT
2 = (0,−1, 0, 0, 1, 0)

(5)

Let consider now the derivatives of the shape functions evaluated at the origin of
the reference frame:

bi = N,i(0) =
∂N

∂xi |ξ = η = ζ = 0
i = 1, 2, 3 Hallquist Form (6)

Explicit expressions of vectors bi can be derived by algebra together with useful
orthogonality relations:







bT
i · hα = 0 , bT

i · s = 0 , bT
i · xj = δij

hT
α · s = 0 , hT

α · hβ = 2δαβ

i, j = 1, ..., 3 α,β = 1,2
(7)

These orthogonality conditions allow the constants aki and cαi to be determined by
scalar products:











aki = bT
k · di , cαi = γT

α · di

where: γα = 1

2

[

hα −
3
∑

j=1

(hT
α · xj)bj

]

(8)

which, combined with Eq. (3), lead to the following convenient form for the displacement
field:

ui = a0i + (x1b
T
1 + x2b

T
2 + x3b

T
3 + h1γ

T
1 + h2γ

T
2 ) · di (9)

The symmetric part of the displacement gradient is then obtained by differentiating
this last equation:

∇s(u) = B · d

∇s(u) =

















ux,x

uy,y

uz,z

ux,y + uy,x

uy,z + uz,y

ux,z + uz,x

















, d =





dx

dy

dz



 ,

B =

















b
T
x + hα,xγT

α 0 0

0 b
T
y + hα,yγ

T
α 0

0 0 b
T
z + hα,zγ

T
α

bT
y + hα,yγ

T
α bT

x + hα,xγ
T
α 0

0 bT
z + hα,zγ

T
α bT

y + hα,yγ
T
α

b
T
z + hα,zγ

T
α 0 b

T
x + hα,xγ

T
α

















(10)

This form of the discrete gradient operator B is very useful because it allows each of
the non-constant strain modes to be handled separately to build an appropriate assumed-
strain field. In addition, it can be shown that the γα vectors involved in this operator



A new prismatic solid-shell element ’SHB6’: . . . 283

satisfy the following orthogonality relations:

γT
α · xj = 0, γT

α · hβ = δαβ (11)

These conditions will prove to be helpful in the subsequent analysis of stiffness
matrix rank deficiencies.

2.3. Variational principle

The expression of the weak form of the Hu–Washizu mixed variational principle,
as extended to non-linear solid mechanics by Fish and Belytschko [17], reads for a single
finite element:

δπ(v, ˙̄ε, σ̄) =

∫

Ωe

δ ˙̄ε
T
· σ dΩ + δ

∫

Ωe

σ̄T ·
(

∇s(v)− ˙̄ε
)

dΩ − δḋT · f ext = 0 (12)

where δ denotes a variation, v the velocity gradient, ˙̄ε the assumed-strain rate, σ̄ the inter-
polated stress, σ the stress evaluated by the constitutive equations, ḋ the nodal velocities,
f
ext the external nodal forces, and ∇s(v) the symmetric part of the velocity gradient. In

the simplified form of this principle, as described by Simo and Hughes [18], the assumed
stress field is chosen to be orthogonal to the difference between the symmetric part of the
displacement gradient and the assumed strain field, leading to:

δπ( ˙̄ε) =

∫

Ωe

δ ˙̄ε
T
· σ dΩ− δḋT · f ext = 0 (13)

Therefore, the discrete equations only require the interpolation of the velocity and
the assumed-strain filed. The latter is expressed in terms of a B̄ matrix, projected starting
from the standard B operator:

˙̄ε(x, t) = B̄(x) · ḋ(t) (14)

Replacing (14) in the variational principle (13), leads to the following expression for
the internal forces:

f
int =

∫

Ωe

B̄
T · σ( ˙̄ε) dΩ (15)

For linear elastic problems, the element stiffness matrix takes the following form:

Ke =

∫

Ωe

B̄
T · C · B̄ dΩ (16)

Note that similarly to the SHB8PS element [16], an improved plane-stress type
constitutive law is adopted here, in order to enhance the element immunity with regard
to thickness locking.
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2.4. Hourglass mode analysis

Hourglass mechanisms are spurious zero-energy modes that are generated by the
reduced integration. Therefore, the analysis of hourglass modes is equivalent to the in-
vestigation of stiffness matrix rank deficiency. Within a displacement-based approach, a
zero-energy mode is a vector hg that satisfies:

B(ζI) · hg = 0 ; I = 1, ..., nint (17)

We can easily demonstrate that the following (ei, i = 1, ..., 18) vectors are linearly
independent, and hence, they form a basis for the vector space of the discretized displace-
ments:

e1 =





s

0

0



, e2=





0

s

0



, e3 =





0

0

s



, e4 =





x

0

0



, e5 =





0

x

0



, e6 =





0

0

x



,

e7 =





x

0

0



, e8 =





0

x

0



, e9 =





0

0

x



, e10 =





x

0

0



, e11 =





0

x

0



, e12 =





0

0

x



 ,

e13 =





h1

0

0



, e14 =





0

h1

0



, e15 =





0

0

h1



, e16 =





h2

0

0



, e17 =





0

h2

0



, e18 =





0

0

h2





(18)

Assuming that vector h
g belongs to the stiffness kernel, one can expand it in terms

of the base vectors:

h
g =

18
∑

i=1

ciei (19)

Combining Eqs. (19), (17), and (10), and taking advantage of orthogonality condi-
tions (7), one obtains:

























c4 + h1,x (ξI) c13 + h2,x (ξI) c16

c8 + h1,y (ξI) c14 + h2,y (ξI) c17

c12 + h1,z (ξI) c15 + h2,z (ξI) c18

c5 + c7 + h1,y (ξI) c13 + h1,x (ξI) c14 + h2,y (ξI) c16 + h2,x (ξI) c17

c9 + c11 + h1,z (ξI) c14 + h1,y (ξI) c15 + h2,z (ξI) c17 + h2,y (ξI) c18

c6 + c10 + h1,z (ξI) c13 + h1,x (ξI) c15 + h2,z (ξI) c16 + h2,x (ξI) c18

























= 0;

I = 1, . . . , nint

(20)
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Evaluating the above equation at the nint different integration points of the SHB6
implies that:































c4 = c13 = c16 = 0
c8 = c14 = c17 = 0
c12 = c15 = c18 = 0
c5 + c7 = 0
c9 + c11 = 0
c6 + c10 = 0

(21)

and hence:

h
g = c1





s

0

0



 + c2





0

s

0



 + c3





0

0

s



 + c5



 0



 () (22)

This last equation reveals that the kernel of the stiffness matrix only consists of
the usual six rigid body modes (three translations and three rotations), and thus no rank
deficiency is observed. It should be noted that this formulation of the SHB6 element is valid
for any set of nint integration points located along the same line ξI = ηI = 1

3
, ζI, I =

1, ..., nint, and comprising at least two integration points (nint ≥ 2).

2.5. Assumed-strain formulation for the SHB6

In this section, the discrete gradient operator B will be projected onto an appropri-
ate subspace in order to eliminate different locking phenomena; the projected operator will
be denoted B̄. It has been shown that this assumed-strain method is consistent, from a
variational perspective, with the Hu–Washizu principle as long as the stress interpolation
is appropriately chosen (see Simo and Hughes [18]). However, this variational justification
of the assumed-strain method does not provide a general and systematic way to derive
adequate assumed-strain fields, and a specific analysis of locking must be conducted for
each new element developed based on this approach. For this purpose, we propose a pro-
jection scheme that is both effective and simple (see [1] for further details). This consists
first of decomposing the discrete gradient operator B into two parts as follows:

B = B1 + B2. (23)

In this additive decomposition, the first part, B1, contains the gradients in the
element mid-plane (membrane terms of the deformation) as well as the normal strains,
whereas the second part, B2, incorporates the gradients associated with the transverse
shear strains:

B1 =

















b
T
x + hα,xγT

α 0 0

0 b
T
y + hα,yγ

T
α 0

0 0 b
T
z + hα,zγ

T
α

bT
y + hα,yγ

T
α bT

x + hα,xγ
T
α 0

0 0 0

0 0 0

















(24)
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B2 =

















0 0 0

0 0 0

0 0 0

0 0 0

0 bT
z + hα,zγ

T
α bT

y + hα,yγ
T
α

bT
z + hα,zγ

T
α 0 bT

x + hα,xγT
α

















(25)

It has been observed, from numerical experiments, that the main locking effects in
the SHB6 element originate from the transverse shears. Therefore, we choose an integration
scheme that enables us to reduce the associated fraction in the total strain energy. In order
to do this, matrix B2 is projected as follows:

B̄2 = εB2 (26)

where ε is a shear scaling factor. By introducing the additive decomposition (23) of the B

operator into Eq. (16) and making use of projection (26), the stiffness matrix becomes:

Ke =

∫

Ωe

B
T
1 ·C · B1 dΩ+

∫

Ωe

B
T
1 ·C · B̄2 dΩ+

∫

Ωe

B̄
T
2 ·C · B1 dΩ+

∫

Ωe

B̄
T
2 · C · B̄2 dΩ (27)

which can be simply written as: Ke = K1 + K2. The first term, K1, which is not affected
by projection, is evaluated at the integration points as defined above:

K1 =

∫

Ωe

B
T
1 · C ·B1 dΩ =

nint
∑

I=1

ω(ζI)J(ζI)B
T
1 (ζI) ·C · B1(ζI) (28)

The second term, K2, embodies all the projection and reads:

K2 =

∫

Ωe

B
T
1 · C · B̄2 dΩ +

∫

Ωe

B̄
T
2 ·C · B1 dΩ +

∫

Ωe

B̄
T
2 · C · B̄2 dΩ (29)

The particular choice of additive decomposition, Eqs. (24) and (25), together with
projection (26), yields a simplified form for the second part of the stiffness matrix K2.
Indeed, with these choices the first two terms, i.e. cross-terms, in the right-hand side of
Eq. (29) vanish, and matrix K2 simply reduces to:

K2 =

∫

Ωe

B̄
T
2 ·C · B̄2 dΩ (30)

The identification of the shear scaling factor ε in Eq. (26) has been carried out
through numerical experiments, and the selected value for this parameter is found to be one
half. This value is motivated by extensive testing on a variety of popular test problems, and
it leads to reasonably good behavior for the element in most of the benchmark problems
that have been tested.
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3. NUMERICAL RESULTS AND ASSESSMENT

In this section, the evaluation of the SHB6 element will be carried out through
several popular benchmark problems. For each test problem, the obtained results are
compared with the reference solution from literature and with the solutions given by both
the standard three-dimensional six-node prism element PRI6 and the unmodified SHB6
element (i.e., without assumed-strain projection). To avoid confusion, the assumed-strain
projected version of the SHB6 will be denoted SHB6bar. Note that this first selection
of numerical examples is restricted to linear elastic problems and is mainly intended to
assess the performance of the element in bending-dominated problems and to illustrate
the benefit of mixing hexahedral and prismatic solid–shell elements such as the SHB6bar

and SHB8PS. In all numerical tests, a single element with only two integration points is
used through the thickness. In the tables reporting the convergence results, the meshes are
indicated by the number of subdivisions in each direction (length, width), and the total
element number is then doubled, since each rectangle is divided into two triangles.

3.1. Twisted cantilever beam

This test has been introduced by MacNeal and Harder [19] and has been extensively
used to test finite element performance in cases of warped configurations. It is considered
now as a reference shell test. The geometry is twisted by an angle of 90˚ between the two
ends of the beam. This distorts the elements and thus increases the severity of the test.
Figure 2 shows the geometry of the twisted beam, the boundary conditions and the applied
loading. The left-side end of the beam is clamped and a unit in-plane shear load, P = 1, is
applied at its right-side end in the z-direction. The geometric and material parameters for
this problem are listed in Table 1. The reference tip displacement in the loading direction
Oz is given in [19], and is expected to be equal to wref = 5.424×10−3.

x y

z

P

L

l

t

A

(a) Test geometry

and loading

(b) Initial and scaled deformed

configurations (scale factor: 500)

Fig. 2. Twisted beam: geometry, loading, boundary conditions, and example of a
(12×4×1)×2 mesh

Table 2 shows the results for this test problem in terms of convergence as a function
of the refinement of the mesh. The normalized displacements at point A in the loading
direction Oz are reported for three elements, using different mesh densities and only one
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Table 1. Geometric, material, and loading data for the clamped circular plate problem

Length L 12
Width l 1.1
Thickness t 0.32
Young’s modulus E 29×106

Poisson’s ratio ν 0.22
Applied load P 1

element through the thickness. One can observe that element SHB6bar converges faster
than elements SHB6 and PRI6.

Table 2. Normalized displacements in the z-direction at the load point A for the
circular plate problem

Mesh layout
PRI6 SHB6 SHB6bar

w/wref w/wref w/wref

(6×2×1)×2 0.061 0.234 0.496
(12×4×1)×2 0.202 0.470 0.784
(24×4×1)×2 0.485 0.779 0.935
(36×8×1)×2 0.489 0.875 0.972

3.2. Circular plate subjected to a point load

This test problem of a clamped circular plate under a concentrated central load
allows the performance of the element in bending and shearing to be assessed. Since the
geometry, boundary conditions, and loading are symmetric, only one quarter of the plate
is modeled using a (3×(N × N×1))×2 mesh nomenclature. Indeed, this quarter of the
plate is divided into three zones containing (N ×N×1)×2 elements each (see Figure 3 for
an example of a (3×(4×4×1))×2 mesh). The plate is subjected to a point load, P = 1,
at the center, and is clamped on its edge. The geometric and material properties for this
problem are described in Table 3. The reference central deflection in the Oz direction is
wref = -2.65736×10−5.

Table 3. Geometric, material, and loading data for the clamped circular plate problem

Radius R 10
Thickness t 0.5
Young’s modulus E 107

Poisson’s ratio ν 0.25
Applied load P 1

The normalized deflections of the load point A in the Oz direction are reported
in Table 4 in terms of mesh refinement. As can be seen in this table, element SHB6bar

converges towards the reference solution better than the two other elements SHB6 and
PRI6.
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xy
z

P/4

R

t

A

sy
m

sym

clamped

(a) Test geometry

and loading

(b) Initial and scaled
deformed configurations

(scale factor: 105)

Fig. 3. Circular plate: Geometry, loading, boundary conditions, and example of a
(3×(4×4×1))×2 mesh

Table 4. Normalized displacements in the z-direction at the load point A for the
circular plate problem

Mesh layout
PRI6 SHB6 SHB6bar

w/wref w/wref w/wref

(3×(2×2×1))×2 0.162 0.422 0.692
(3×(4×4×1))×2 0.370 0.638 0.876
(3×(6×6×1))×2 0.522 0.753 0.942
(3×(8×8×1))×2 0.624 0.820 0.974

3.3. Pinched hemispherical shell with a mixture of elements

This test problem, which is often used to assess the three-dimensional inextensional
bending behavior of shells, has become very popular and has been adopted by many
authors since it was proposed by MacNeal and Harder [19]. This test is known to be
severe because the transverse shear and membrane locking phenomena are dominant and
are further accentuated by the particular geometry of the problem (distorted, skewed
elements). This problem was studied in detail by Belytschko et al. [20], who showed that
since all the elements are incurved in this doubly-curved shell problem, the intensity of
membrane and shear locking is increased. Figure 4 shows the geometry, loading, and
boundary conditions for this elastic thin shell problem (R/t = 250). In this example, a
mixture of SHB6 and SHB8PS elements is used, in which the SHB6 elements are located
at the top of the hemisphere.

Owing to the symmetry of the test, only one quarter of the hemisphere is meshed
using a single layer of elements through the thickness and with two unit loads along the
directions Ox and Oy. According to the reference solution [19], the displacement of point
A along the x-direction is wref = 0.0924. Note that in order to compare the performance
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Fig. 4. Pinched hemispherical shell problem with a mixture of prismatic and hex-
ahedral elements: the SHB6 elements are located at the top, and the SHB8PS
elements are arranged over an angle of 75˚

Table 5. Geometric, material, and loading data for the pinched hemispherical shell problem

Radius R 10
Thickness t 0.04
Young’s modulus E 6.825×107

Poisson’s ratio ν 0.3
Applied load F 1

of solid–shell elements to that of standard three-dimensional elements, SHB6 elements are
mixed with SHB8PS elements, and PRI6 elements are mixed with their three-dimensional
counterpart HEX8, which are the standard, full integration eight-node hexahedral ele-
ments. The normalized results reported in Table 6 reveal a very good convergence rate
when the SHB6 is mixed with the SHB8PS, which confirms the interest of mixing hexa-
hedral and prismatic solid–shell elements.

Table 6. Normalized displacements at point A for the pinched hemispherical shell
problem: mixed meshes.

Number of elements
PRI6 +
HEX8

SHB6 +
SHB8PS

SHB6bar+
SHB8PS

w/wref w/wref w/wref

36 0.001 0.703 0.785
100 0.002 0.880 0.960
156 0.004 0.929 0.983
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4. CONCLUSIONS

A new solid–shell element SHB6bar has been developed and implemented into the
finite element code ASTER. The key idea of this development is the adequate combination
of a reduced integration rule with the well-known assumed-strain method. An interesting
feature of this approach is the convenient fully three-dimensional framework on which
this solid–shell element is based (six-node prism with only three translational degrees of
freedom per node). Also it has been shown that no zero-energy modes arise from the
adopted reduced integration scheme, and thus no stabilization procedure is required. As
revealed by the benchmark problems, the SHB6bar element brings significant improvements
compared to the standard three-dimensional six-node prismatic element denoted PRI6.
The projection using the assumed-strain technique makes the quality of the element even
better under combined bending and shearing. However, the convergence remains rather
slow in some bending-dominated benchmark problems, probably due to constant strain
states in linear triangular elements. This type of element blends naturally with the eight-
node hexahedral solid–shell element SHB8PS, thus enabling one to analyze any structural
geometry quite easily, which is the main motivation behind the development of the present
SHB6bar element. Recall that meshing arbitrarily complex geometries is not permitted
using only hexahedral elements.
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PHẦN TỬ VỎ-KHỐI HÌNH LĂNG TRỤ MỚI "SHB6": CÔNG THỨC BIẾN
DẠNG GIẢ ĐỊNH VÀ ĐÁNH GIÁ TRÊN CÁC BÀI TOÁN CHUẨN

Bài báo này đề nghị công thức cho phần tử vỏ-khối 6 nút, ký hiệu là SHB6. Phần tử lăng
trụ này dựa trên phương pháp ba chiều thuần túy và vì thế chỉ có các chuyển dịch là các bậc tự
do. Sử dụng lược đồ tích phân suy giảm với một điểm cầu phương trong mặt phẳng và một số tùy
ý các điểm tích phân, tối thiểu là hai điểm, theo hướng "chiều dầy". Thêm vào đó, để làm tăng
ứng xử của phần tử và giảm bớt đáng kể ảnh hưởng của nghẽn, các phép chiếu cụ thể được đưa
vào trên cơ sở phương pháp biến dạng giả định. Kết quả thu được có thể sử dụng để mô hình các
bài toán kết cấu mỏng có tính tới một số hiện tượng theo chiều dầy. Việc phân tích kỹ lưỡng hiện
tượng có thể về suy giảm hạng ma trận độ cứng chỉ ra rằng không có mode "hourglass" nào cần
kiểm soát. Tuy nhiên, nếu không sử dụng phương pháp biến dạng giả định phần tử có hiện tượng
nghẽn trượt và loại nghẽn "dầy", các loại nghẽn thông thường của phần tử tuyến tính tam giác
liên quan tới các trạng thái biến dạng phẳng. Sau khi trình bày chi tiết công thức, ứng xử của
phần tử được đề cập qua một loạt các bài toán chuẩn nhằm minh họa cho khả năng của nó trong
các tình huống khác nhau. Cụ thể hơn, phần tử vỏ-khối lăng trụ này chứng tỏ những ưu điểm cốt
yếu so với phần tử lục giác SHB8PS trong việc tạo lưới cho các dạng hình học phức tạp tùy ý.


