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Abstract. Data completion is a problem in which known or measured superabundant
data exist for part of the boundaries of a domain, whereas the data for the rest of
the boundaries are unknown. Thus the aim is to determine the solution of a known
PDE defined throughout the domain, which satisfies the superabundant data and then
identifies the missing ones. For linear symmetric operators, we propose a general method
to solve the data completion problem as a Cauchy problem. Various applications are
described for stationary conduction and elastostatic problems.

1. INTRODUCTION

Given the growth of development in measurement and data imaging technologies
[11.], data completion problems can arise in a large range of applications. These problems
occur when dealing with PDE known to hold true in a solid for which data is lacking on a
part of its boundary but with superabundant boundary data on another part of it. Thus
data completion problems consist in recovering the lacking data. It is an inverse, then an
ill-posed problem. Examples can be found in thermal and electric conduction problems or
linear elasticity, in saturated porous media, for linear fracture mechanics applications.

The data completion problem has been addressed by many authors, firstly for the
Laplace operator and mainly in two dimensions. Various approaches have been proposed
using boundary element techniques [2,3], fundamental solutions [4,5], regularized least
squares methods [6], moment methods associated with the Backus–Gilbert procedure [7],
fixed point techniques [8] and, more recently, variational approaches based on Steklov-
Poincaré operators [9,10].

In this paper, a general method is proposed for linear symmetric operators. It gives
a comprehensive and compact presentation of previous works by the authors for various
operators: elastostatics, stationary conduction problems and flow in saturated porous me-
dia. Several new applications are presented. The first part of the paper is devoted to the
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presentation of the data completion problem, and then the energy-like error method is
developed. Then, the minimization algorithm used which is a sensitive point when dealing
with ill-posed problems, is detailed. The last part is devoted to various applications, where
the performance and robustness of the method are examined in different situations. The
general energy-like error approach developed here can be linked with pioneering works,
such as those of Knowles who identified coefficient functions in an elliptical equation [11]
and [12] in a similar framework, and more generally with the development of constitutive
equation errors for various applications by Ladevèze et al. in [13,14,15].

2. DATA COMPLETION PROBLEM FOR LINEAR
SYMMETRIC OPERATORS

Let us consider a positive symmetric bilinear form a and a space V of functions in a
domain Ω, such that a(u, v) is finite for any pair of fields (u,v) of V 2. Then, B represents
the associated natural boundary condition operator, defined by:

∀u ∈ V :

∫

∂Ω

Bu.n v = a(u, v), ∀v ∈ V (1)

where n stands for the external unit vector to the regular boundary ∂Ω of the domain.
Now let us suppose that this external boundary is partitioned into three non overlapping
parts, ∂Ω = Γm ∪ Γb ∪ Γu, Γm ∩ Γb = Γm ∩ Γu = Γu ∩ Γb = ∅:
- On the boundary Γm, natural boundary conditions Bu.n = Tm and an essential boundary
conditions u = Um are known or measured,
- On the boundary Γb, a usual combination of natural boundary conditions (Bu.n)i = bi

and essential boundary conditions uj = Uj is known. We introduce the linear form l and
the following subspaces:

l(v) =

∫

Γb

bi vi, VU =
{

v ∈ V, vj |Γb

= Uj

}

and V0 =
{

v ∈ V, vj|Γb

= 0
}

) (2)

- On the boundary Γu, both natural and essential boundary conditions are unknown.
The data completion problem is therefore the following:
Find a field u in space VU such that:

{

a(u, v) =
∫

Γu
Bu.n v+

∫

Γm
Tm v+ l(v) , ∀v ∈ V0

u|Γm
= Um

(3)

That means: finding an equilibrium field meeting the usual boundary conditions
on Γb and the superabundant boundary conditions on Γm. If such a field exists and is
unique, it provides the lacking boundary conditions (Bu.n , u) on Γu. This feature justifies
considering (3) as a data completion problem. If part Γb of the boundary vanishes, the
problem turns out to be a Cauchy problem. In the following table, the corresponding
spaces, bi-linear forms and boundary operators are displayed for the stationary thermal
conduction problem-or incompressible Darcy equations for saturated porous media, and
for the elastostatic problem. k is the thermal conductivity tensor or the ratio of the
permeability tensor over dynamic viscosity and A the Hooke tensor. In the data completion
problem, they are assumed to be known over the whole domain Ω. When u is a vector field,
as in elastostatics, more elaborated data completion problems can be defined by using
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Table 1. Variational formulations

V Space a form B operator
H1(Ω) a(u, v) =

∫

Ω k : ∇u.∇ v Bu.n = k : ∇u.n
H1(Ω)3 a(u, v) =

∫

Ω A : ε(u) : ε(v) Bu.n = A : ε(u).n

alternative combinations of superabundant data on Γm. For example, in data imaging
devices, only tangential displacement fields on a stress free surface are measured, thus the
question of expanding the displacement field inside the solid can be called an incomplete
Cauchy problem. Although the superabundant data are Bu.n=Tm and u− (u.n) n = U t

m,
where U t

m is the tangential component of Um, the method developed here can be applied
without any major change. This has been addressed by Andrieux and Baranger in [16],
where 3D applications are also given.

3. FORMULATION OF THE DATA COMPLETION PROBLEM AS AN
ENERGY ERROR MINIMIZATION PROBLEM

The data completion problem is not a classical one because of the combination of
superabundant data in a part of the boundary and a total lack of data in another part. To
derive a general solution method, we proceed in two steps. First two well-posed usual direct
problems are defined, the solutions of which are denoted by u1 and u2. These problems
are parameterized respectively by two fields gτ (a natural boundary condition quantity)
and υg (a field quantity or Dirichlet boundary condition) defined on the boundary Γu

where no data are available, namely:

u1 ∈ VU ,

{

a(u1, v) =
∫

Γu
τ v+ l(v), ∀v ∈ V m

0

u1|Γm
= Um

, V m
0 =

{

v ∈ V0, v|Γm
= 0

}

(4)

u2 ∈ VU ,

{

a(u2, v) =
∫

Γm
Tm v+ l(v) , ∀v ∈ V u

0

u2|Γu
= υ

, V u
0 =

{

v ∈ V0, v|Γu
= 0

}

(5)

The first problem has a prescribed field condition with the actual value Um on Γm,
and a natural boundary condition with value τ on Γu, whereas the second corresponds to
prescribed value υ on Γu and a natural boundary condition corresponding to the actual
value Tm on Γm. For the second step, it should now be noted that if the two fields u1(τ) and
u2(υ) coincide, then the data completion problem is solved: the common value u = u1 = u2

indeed satisfies (3) and:
u|Γu

= υ , Bu.n|Γu
= τ (6)

It is then natural to introduce a functional measuring the gap between the two
fields. Here, the choice of this functional is the error in the energy semi-norm:

J(u1, u2) =
1

2
a(u1 − u2, u1 − u2). (7)

This denomination of energy is chosen because of the minimum properties (minimum
energy theorems) characterizing the two solutions of problems (4) and (5):

u1 =
ArgMin
{

v ∈ V m
0 , v|Γm

= Um

}

1

2
a(v, v)−

∫

Γu

τ v− l(v) (8)
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u2 =
ArgMin
{

v ∈ V u
0 , v|Γu

= υ
}

1

2
a(v, v)−

∫

Γm

Tm v− l(v) (9)

The data completion problem is then formulated via the minimization of the energy
error functional (7):

Find (τ, υ) thatminimize E(τ, υ)≡ J(u1, u2)

With

{

u1 = u1(Um, τ) solution of (4)
u2 = u2(Tm, υ) solution of (5)

(10)

Obviously E is a positive quadratic and convex functional because a(•,•) is a positive
bilinear form. It is also straightforward to verify that if a pair of fields (τ ,υ) satisfies E = 0
then the corresponding fields u1 and u2 possibly differ only by a field belonging to the null
space of the bilinear form a(•,•) (if it is not reduced to zero) satisfying null conditions on
Γb, and that u1 solves the Cauchy problem.

E(τ, υ) = J(u1, u2) = 0 ⇔,

{

u1 solves (2) and u2 = u1 + r
a(r, v) = 0 ∀v ∈ V, rj|Γb

= 0
(11)

For computational purposes, an alternative form of the functional can be derived,
involving only boundary integrals, by using the weak formulation of problems (4) and (5):

E(τ, υ) =
1

2

∫

Γm

(Bu1(τ).n− Tm).(Um − u2(υ)) +
1

2

∫

Γu

(τ − Bu2(υ).n).(u1(τ) − υ) (12)

This expression is used in the computations and avoids any domain integration.
Note that it involves both surfaces Γm and Γu.

4. TRUST REGION ALGORITHM AND GRADIENT COMPUTATION
FOR THE EFFECTIVE MINIMIZATION OF THE ENERGY ERROR

The data completion problem has been reduced to the minimization of a quadratic,
convex, functional (10) and at first glance, the best way of achieving minimization is to
solve the first order optimality condition:

∇E(τ, υ).(δτ, δυ) = 0 ∀(δτ, δυ) (13)

which turns out to be a linear problem. Once discretized, equation (13) is therefore a
linear system where the unknowns are the components of the vector collecting the nu-
merical values describing the discretized form of field υgnd natural boundary quantity τ
on boundary Γu. However, as soon as the number of unknowns increases, as is the case
for 3D data completion problems for vector fields, this method has to be discarded for
two main reasons. First the computational costs of the Hessian matrix of the discretized
error energy E increases dramatically as it requires the resolution of n problems of type
(4) or (5), n being the total number of unknowns. Secondly, the data completion problem
or the equivalent Cauchy problem is known to be ill-posed. In fact, even if there only
one solution exists when the data are compatible, there is no continuity of the solution
with respect to the data pair (Um,Tm). This feature results in very poor conditioning of
the Hessian matrix of E, the condition number decreasing very quickly as the number of
unknowns increases, Andrieux and Baranger [15,16,17]. The direct resolution of the linear
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system resulting from (13) leads to very unstable results and is very sensitive to the noise
inevitably present in the data (Um, Tm).

A direct optimization method is preferred, using only the gradients of the function.
The gradient must be computed by an adjoint method because of the implicit dependence
of the u1 and u2 fields on variables (τ , υ), and the relatively high cost of evaluation of
the function itself. The Lagrangian associated with the energy error function (7) with the
state equations (4) and (5) is:

L(u1, u2, µ, λ, v1, v2; τ, υ) = J(u1, u2) + a(u1, v1) + a(u2, v2) − l(v1 + v2)

−
∫

Γm

Tm.v2 −
∫

Γu

[λ.( u2 − υ) + µ.v2 + τ.v1]
(14)

and is defined on the following product space:

(u1, u2, v1, v2, λ, µ ) ∈ V m
U x VUx V0 x V u

0 x H(Γu) x H(Γu) (15)

With V m
U =

{

v ∈ VU , v|Γm
= Um

}

, H(Γu) is the traces’ dual space on Γu of the
fields belonging to V . Following the classical approach, the stationarity of the Lagrangian
with respect to primal fields u1 and u2leads to the definition of the two adjoint problems:

v1 ∈ V m
0 , a(v1, v) = a(u1 − u2, v) ∀v ∈ V m

0

v2 ∈ V u
0 , a(v2, v) = a(u2 − u1, v) ∀v ∈ V u

0
(16)

These adjoint problems are quite simple, because of the symmetry of the bilinear
form a, which leads to the self-adjoint property for the associated operator. They are
also linear problems, and because of the energy choice for the semi-norm used in the
quantification of the gap between u1 and u2, only boundary conditions involving the data
and the primal fields appear. Furthermore the operator, or rigidity matrix in the discretized
version, is the same as for the direct problems (4) and (5). With these adjoint fields, the
gradients of the error functional are simply:

∇τE(τ, υ) = − v1|Γu
, ∇υE(τ, υ) = [Bu2.n + Bv2.n − τ ]|Γu

(17)

The derivation of the discrete adjoint problems, which must be preferred to the
discretized version of the continuous adjoint problem (16), follows exactly the same path.

Going back to the minimization algorithm for the discretized E function, each it-
eration of the algorithm involves the solution of four linear systems: two direct problems
defined in (4) and (5) and two adjoint problems defined by (16). The quadratic energy
error function can be written formally as follows:

E(X) = 1
2XTHX + XTB + C

with X= {Xτ , Xυ} gathering the unkowns for τ and υ respectively
(18)

where H is the Hessian which depends only on the geometrical and material data, while B
and C depend on the geometrical and material data and also on the measured boundary
data (Tm, Um). The Hessian is positive and undefined, so the convergence of the conju-
gate gradient algorithm is slow. The Trust Region Method (TRM) is adopted in order to
optimize the computational cost. The latter method must solve the following sub-problem
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for each iteration k:

min

{

Q(Sk) =
1

2
ST

k HSk + ST
k ∇Ek−1 such that

∥

∥ST
k

∥

∥ ≤ δ

}

(19)

where Q(Sk) is the quadratic approximation of E(Xk−1 + Sk), ∇Ek−1 = HXk−1 + B is
the energy function gradient computed at the previous iteration (k−1), and δ is a positive
scalar which measures the radius of the trust region and reflects the confidence in the
second-order model. As the energy function E is quadratic, Q(Sk) is an exact approxima-
tion of E(Xk−1+Sk), while the optimal search direction is Newtonian: Sk = −H−1∇Ek−1.
However, this search direction is not well defined when the Hessian is singular and the
gradient depends on the superabundant data. The search direction is instead defined by
solving the Trust Region Sub-problem defined by (19) whose associated Lagrangian func-
tion is:

L(X, λ) =
1

2
ST

k HSk + ST
k ∆Ek−1 +

λ

2
ST

k Sk (20)

This quadratic function can be interpreted as a regularized quadratic model for E
around Xk−1, and its exact solution is given by:

(H + λI) Sk = −∇Ek−1 (21)

The proposed approach using the minimization formulation (18) does not explicitly
incorporate any kind of regularization, although the Cauchy problem is very ill-posed.
Nevertheless, the use of the trust region method brings a form of regularization to the
numerical applications and the value of the stopping criterion plays the role of regular-
ization parameter. For moderate noise corrupting the data, this regularization appears as
sufficient as shown for the thermal conductivity equation (Andrieux et al. [17]). The stop-
ping criterion used in the optimization process of the following applications is the function
value or its relative change between two iterations.

5. APPLICATIONS

In this section, we present different applications where the energy method is used
to identify the boundary conditions. These applications concern thermostatics and elasto-
statics.

5.1. Thermostatics
We consider a domain Ω as shown in figure 2, where the temperature and flux are

known on Γm. The goal is to identify the temperature and the flux on Γu, which has a
geometric singularity at point O. We consider the following temperature distribution:u =
y/((x − 0.5)2 + y2). Notice that this field has very large temperature variations and a
flux discontinuity at the point Oon Γu. The superabundant data are then generated by
using the above analytical distribution as the Dirichlet boundary condition of the direct
problem. Figures 3 and 4 show the identified temperature and flux obtained by finite
element analysis with a mesh characterized by 73 nodes on Γm and 37 nodes on Γu, see
figure 2. Notice that the identified fields are in good agreement with the exact ones, and
that the flux discontinuity is recovered with good precision. The stopping criterion for the
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Trust Region Method is set at 10−12 and the minimum of the functional is reached after
44 iterations.
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Figs. 5 and 6 show the identified temperature and flux obtained with noisy data
(5%) on Γm. These results are obtained without additional regularization. The stopping
criterion for the Trust Region Method is set at 10−3, and convergence is reached after only
three iterations.

In this paragraph we present a problem governed by a Laplace operator for homoge-
nous media with geometric and field singularities. The corresponding data completion
problem is solved with good accuracy, even for reasonably noisy data (5%). This method
has also been applied for strongly orthotropic media and has also given good results, see
Andrieux et. al. [17]. Two other applications have also yielded very good results, the first
application being devoted to the identification of leaks in porous media; see Escriva and
Baranger [18]. The second is devoted to electrocardiography, where the heart’s potential
is identified by using the measured potential in the thorax; see Hariga and Baranger [19].

5.2. Elastostatics
A. Identification of elastic moduli for a geometrically determined inclusion

Here, we consider a body Ω = Ω1 ∪ Ω2 with a geometrically determined inclusion
Ω2, as shown in Fig. 7. The material parameters (Young’s modulus and Poisson’s ratio)
of the inclusion are unknown. We propose a method to identify these parameters by using
superabundant boundary conditions measured on a part of the outer boundary. Two steps
are necessary: the first consists of solving the corresponding Cauchy problem defined on
the domain Ω1 alone. This leads to identifying boundary conditions (τ , υ) on the inner
boundary, as shown on figure 8. The second step consists in applying the Maxwell-Betti
reciprocity theorem by considering inclusion Ω2 alone and using the identified data (τ , υ).
We consider domain Ω1, as shown on figure 8, where the displacements and the surface
tractions on the lateral outer boundaries are known, the horizontal outer boundaries are
free from surface tractions and the data (τ , υ) on the inner boundary are unknown. The
superabundant data are generated numerically by solving the direct problem defined on
the figure 7. By solving the minimization problem defined in (11) the lacking boundary
conditions are identified. The minimization process is achieved with 6 iterations. Figures
9 and 10 show the identified and the exact data. Notice that the results obtained are in
good agreement with the exact ones.

The Cauchy problem considered addresses a homogeneous isotropic two-dimensional
medium under a plane strain assumption, i.e. with reference to table 1:

a(u, v) =

∫

Ω
A : ε(u) : ε(v) with A = (k − µ)I2 ⊗ I2 + 2µI4 (22)

where k is the compressibility modulus and µ the shear modulus. To identify the material
properties (k, µ) of the inclusion, we use the pair of the boundary conditions identified
above denoted here by U={Ux,Uy}T and F={Fx,Fy}T = σ.n and we consider the domain
Ω2 of the inclusion alone. An auxiliary displacement field w is then chosen such that it
satisfies the elastic equilibrium equation. Applying the Betti-Maxwell reciprocity equation,
we can determine a set of equations on A, by choosing various expressions of the auxiliary
fieldw:

A :

∫

∂Ω2

ε(w) : n.U =

∫

∂Ω2

F.w (23)
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Fig. 7. Geometry and materials data of the
direct problem

Fig. 8. Geometry and material data used to
solve the Cauchy problem

Fig. 9. Exact and identified displacements
components on Γu

Fig. 10. Exact and identified stress vector
component on Γu: F = {Fx, Fy}T

= σ.n, n
is the outer normal at Γu

Taking w = xex + yey and if
∫

∂Ω2

U.n d∂Ω2 does not vanish, which is the case here,
compressibility modulus k is determined as follows:

k =

∫

∂Ω2
Fxx + Fyy

2
∫

∂Ω2

Uxnx + Uyny
(24)

In order to identify the shear modulus another auxiliary field w = (y−x)ex + (x+
y)ey is chosen. This choice leads to the following formula:

µ =
1

2

∫

∂Ω2

Fx(y − x) + Fy(x + y)
∫

∂Ω2

Ux(ny − nx) + Uy(nx + ny)
(25)



256 Thouraya N. Baranger and Stéphane Andrieux

Table 2 shows the identified parameters compared to the exact ones. It should be
noted that the precision is very good, as the relative error does not exceed 2% for E and
µ.

Table 2. Parameter formulae with the plane strain assumption. Identified and
exact parameter values

Parameters k µ E ν
Exact 8653.8 3461.5 9000 0.3
Identified 8311.5 (3.9%) 3432.7 (0.8%) 8880.4 (1.3%) 0.2935 (2.1%)
Plane strain

k = λ + µ λ = Eν
(1+ν)(1−2ν) µ = E

2(1+ν) E = µ
k (2k − µ) ν = k−µ

2kformulas

B. Recovery of stress intensity factors of a cracked body

This example concerns a plate with a crack. The goal here is to identify the stress
intensity factor. The geometric line where the crack is located is assumed to be known and
only the half of the plate is modelled due to its symmetry, see figure 20. The superabundant
data are generated numerically by solving the direct problem. We consider two models for
the Cauchy problem:
-c Model 1: we consider domain Ω = Ω1 ∪ Ω2 ∪ Ω3 with superabundant data on Γm and
unknown one on Γu1.
- Model 2: we consider domain Ω = Ω1∪Ω2 with superabundant data on Γm and unknown
data on Γu2.

Figs. 12 and 13 show the exact and identified displacements fields obtained with
the model 1 and 2, respectively. Note the good agreement between the two fields. Table
3 presents the stress intensity factors of mode I, evaluated by using the direct problem
and the two inverse problems based on models 1 and 2. The stress intensity factor is
evaluated using the so-called J-integral. For the mode I, the J-integral is related to the
stress intensity factor and the elastic material,for the plane stress case, as follows:

KI =
√

EJ with J =

∫

Γi

Wnx − σijnjui,xdS (26)

where E is the Young modulus.
The problem addressed here has an analytical solution for the stress intensity factor:

KI = σ
√

πaf , where σ=20 MPa is the tensile load, a = 0.6 is the crack length and f = 2.1
is the configuration correction factor. This factor is determined for this configuration using
a polynomial equation, see Ragab et. al. [20].

Table 3 shows the stress intensity factors computed by the direct method and the
inverse problem based on the models defined above. The first line shows the stress intensity
factor obtained by the J-integral on boundaries 1, 2 and 3. The second line shows the
stress intensity factors obtained by solving the Cauchy problem on model 1. Here the
data completion is held on the boundary Γu1 and the J-integrals are evaluated further on
boundaries1, 2 and 3. The results are in good agreement with those obtained analytically.
The third line shows the stress intensity factors obtained by solving the Cauchy problem
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Fig. 11. Geometric data Fig. 12. Exact and identified displacement
components on Γu1

Fig. 13. Exact and identified displacement components on Γu2

on model 2. Here, the data completion is held on boundary Γu2 and the J-integrals are
evaluated further on boundaries 1, 2 and 3. It should be noted that the relative error is
higher for the stress intensity factor obtained from the J-integral evaluated on boundary
1, which is a part of boundary Γu2, and also on boundary 3. This can be explained by the
fact that the J-integral is evaluated on a boundary whose data are identified and show
greater disturbance, as shown in figure 12.
C. Expansion of surface displacement fields inside an elastic solid

The last example concerns the expansion of surface displacement fields inside an
elastic domain. We consider the domain shown in figure 14, which can be semi-infinite
and where loads denoted by p act on a part of the free surface. It is assumed that loads p
and the boundary where they are acting are unknown. the domain Ω defined by the zoom
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Table 3. Comparison of the stress intensity factors obtained from the direct and
inverse problem. The reference solution is the analytical one given by K=57.66
MPa m1/2

K i evaluated on
K 1(MPa m1/2) K 2(MPa m1/2) K 3(MPa m1/2)

the boundary i
Direct Model 57.69 (0.4%) 57.68 (0.03%) 57.66 (0.05%)
Inverse problem:

58.11 (0.7%) 58.77 (1.9%) 58.17 (0.8%)Model 1: Ω = Ω1 ∪ Ω2 ∪ Ω3

Inverse problem:
54.88 (4.8%) 57.84 (0.3%) 55.87 (3.1%)

Model 2: Ω = Ω1 ∪ Ω2

is considered, as shown in figure 15. The displacement measurement can be performed on
the free surface of Ω denoted here by Γm. Thus superabundant boundary conditions are
available on Γm, i.e. Dirichlet boundary conditions (measurements) and Neumann bound-
ary conditions (free traction surface). Note here that the Neumann boundary condition is
known exactly, whereas the boundary conditions are unknown on the rest of the boundary
denoted by Γu, such that ∂Ω = Γm ∪ Γu.

Fig. 14. Forward problem data Fig. 15. Exact Von Mises stress distribution on
the domain defined by the zoom (figure 14)

To address this problem we first consider a plane strain finite element model and
an elastic material with Young’s modulus E=1000 MPa and Poisson ratio ν = 0.3. Then
the direct problem is solved under the action of load p=100 N/m. Figures 14 and 15 show
the map of the Von Mises stress distribution. The displacement measurements on Γm to
be used in the inverse problem are extracted from this direct problem.

Figures 16 and 17 show the identified displacements components and Von Mises
stress distribution. It can be seen that the identified data are in very good agreement with
the exact ones.
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Fig. 16. Exact and Identified displacement
vector components on Γu

Fig. 17. Identified Von Mises stress distribu-
tion on the subdomain defined by the zoom
(figure 14)

This example has two main difficulties. First, boundary Γm is much smaller than
Γu, thus there are fewer data than unknowns. Second, surface traction Tm on Γm is zero;
consequently the problem defined by (5) is ill-posed in the sense that the Dirichlet bound-
ary condition υ must be initialized with an adequate value in order to avoid rigid body
movements.

6. CONCLUSION

A general method has been presented in this paper to solve Cauchy problems for
symmetric elliptic operators such as those found in elastostatics and thermostatics and
thus identify boundary conditions. Four examples have been presented. The first deals with
thermostatics and in spite of a high temperature variation in the vicinity of the source
point and the discontinuity of the flux, the missing data are recovered with good precision
even when the measured data are noisy (5%). This example allows the generalization of the
method to a physical problem governed by a Laplace operator. The three other examples
deal with elastostatics problems.

The results obtained are in good agreement with the exact ones, even when the
context and conditions are unfavourable: the quantity of known data on the boundary Γm

is significantly less than that of unknown data on Γu; the boundary Γu exhibits geometric
singularities, such as cracks. Obviously, it is essential that the user of this method must
have thorough knowledge of the physical problem so that they can better interpret the
results and, in particular, better control the main stages: initializing the variables to be
identified and controlling minimization with an adequate stopping criterion.

The method presented can be easily implemented in industrial finite element soft-
ware in order to solve industrial identification problems. No regularization is needed.
However, in the case of industrial applications, the data are often severely altered by noise
which also alters identification. The effect of noise has been examined for the Cauchy prob-
lem for the Laplacian operator in a previous paper [16,17,18], dealing with thermostatic
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and elastostatic examples. The incorporation of some kind of regularization seems to be a
requisite in the method as soon as noise exceeds 5%.

This method is being extended and investigated for nonlinear problems (material
and geometric nonlinearities) and for time dependent problems [23,24,25].
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BỔ SUNG DỮ LIỆU CHO CÁC TOÁN TỬ TUYẾN TÍNH ĐỐI XỨNG
CŨNG NHƯ BÀI TOÁN CAUCHY: MỘT PHƯƠNG PHÁP HIỆU QUẢ

DỰA TRÊN SỰ CỰC TIỂU HÓA SAI SỐ DẠNG NĂNG LƯỢNG

Bổ sung dữ liệu là một bài toán trong đó dữ liệu dư đo được hoặc biết được trên
một phần biên của miền, trong khi dữ liệu trên phần biên còn lại là không biết. Do đó
mục đích là xác định lời giải của phương trình đạo hàm riêng xác định trên toàn miền,
thỏa mãn các dữ liệu dư và sau đó xác định những dữ liệu thiếu. Với các toán tử tuyến
tính đối xứng, chúng tôi đề xuất một phương pháp tổng quát để giải bài toán bổ sung dữ
liệu cũng như bài toán Cauchy. Nhiều ứng dụng khác nhau được mô tả cho các bài toán
dẫn (nhiệt điện) ổn định và bài toán đàn hồi tĩnh.


