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DUAL INTEGRALS IN NON-LINEAR
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Abstract. We propose a dual approach in fracture mechanics based on complementary
energy. The analysis of the dissipation shows that the thermodynamical force associated
with the evolution of a crack is an energy release rate, form of which depends on the
presence or not of mechanical discontinuities. This energy release rate is given as an inte-
gral based on free or complementary energy. We analyse the invariance of such integrals
and we discuss the obtained results in elastoplasticity.

1. INTRODUCTION

Consider a body Ω with a crack, represented by a straight line. Around the crack
tip we distinguish three domains determined by the distance from the tip.

Fig. 1. The description of the behaviour near the crack tip

• The nearest zone I, where all physical processes of rupture occur, that is the
process zone.

• Zone II, where the mechanical fields are described by the singular field.
• Zone III, where the mechanical fields match with boundary conditions.
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At our scale crack is represented by a line along Ox. The normal is ey in the plane, and

ez normal to the plane. The crack length is l(t) and a = l̇ is the crack speed.
If the singularities of mechanical fields govern the crack propagation, it is not nec-

essary to take into account the rupture process. This is an approximation which leads to a
global approach of rupture. This description is powerfull and constitutes the key point for
describing classical fracture mechanics. In this case, the singularities represent the loading
applied on the process zone.

In non linear mechanics these notions must be revisited. The dissipation can be
represented by several manner, depending on the local constitutive law and on the mech-
anisms of rupture. The dissipation can be concentrated in one point due to singularities
or along a surface of discontinuities as in shock waves or formed inside a volume. Any
situation depends on the characteristic of the material and on condition of propagation.

For example, under anti-plane shear in elastodynamics, the displacement u = w(x, y, t)ez

is governed by

(1 −
a2

C2
)w′′

,xx + w′′
,yy = 0 (1)

where the Mach number M =
a

C
defines the nature of this equation. For small M < 1 the

equation is elliptic, w is singular and the dissipation is concentrated at the crack tip. For
large value of M (M > 1) the equation is hyperbolic, the gradient ∇w has jump and the
dissipation is concentrated along moving surface.

In elastoplasticity, the local equations are also hyperbolic, the same can be realized
for hyperelastic material [1].

2. CHARACTERIZATION OF THE PROPAGATION

The essential difficulty of the problem of propagation is the dependence of Ω on the
crack length and the presence of moving singularities accompanying the crack.

One possibility has been investigated in [2] by introducing a geometrical lagrangean
description. We propose to based our description upon the concept of singularity transport
([3],[4],[5]). Inside a moving frame in translation with the crack tip, the nature of the
singularity is conserved. The crack singularity is surrounded by a curve Γ delimiting a
domain VΓ. This domain translates with the tip of the crack position of which is given
by function l(t). All mechanical quantities are expressed in terms of the classical fixed
coordinates outside VΓ and in terms of moving coordinates inside VΓ.

x = X − l(t),

y = Y.

Any mechanical quantity F possesses time derivative given by
◦

f , which represents the
variation of f in the moving frame :

F (X, Y, t) = f(x, y, t), ḟ =
∂F

∂t
= −a

∂f

∂X
+

◦

f. (2)
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Fig. 2. Decomposition of Ω in ΩΓ ∪ VΓ

In order to separate the contribution of the crack tip in the expression of dissipation, we
apply these definitions to average quantities on the whole domain:

F =

∫

Ω

fρ dΩ =

∫

ΩΓ

fρ dΩ +

∫

VΓ

fρ dΩ,

d

dt
F =

d

dt
(

∫

ΩΓ

fρ dΩ) +

∫

VΓ

◦

fρ dΩ.

d

dt
(

∫

ΩΓ

fρ dΩ) =

∫

ΩΓ

ḟρ dΩ −

∫

Γ
fρanx dS.

Let us introduce the notations : fx = f.ex,∇xf = ∇f.ex.
Dissipation. The dissipation of the whole system can be rewritten as

Dm = Pe −
d

dt

∫

Ω
wρ dΩ ≥ 0, (3)

where the power of external forces Pe is given in term of local stresses, taking into account
the conservation of the momentum :

Pe =

∫

∂Ω
n.σ.v dS. (4)

Using divergence theorem, this quantity is decomposed in two terms:
∫

∂Ω
n.σ.v dS =

∫

ΩΓ

σ : ε(v) dΩ +

∫

Γ
n.σ.v dS. (5)

Using now the decomposition of the volume (Ω = ΩΓ ∪ VΓ) we obtain first

d

dt

∫

Ω
wρ dΩ =

d

dt
(

∫

ΩΓ

wρ dΩ) +

∫

VΓ

◦
wρ dΩ, (6)
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and by application of general relations :

d

dt

∫

ΩΓ

wρ dΩ =

∫

ΩΓ

ẇρ dΩ −

∫

Γ
ρwnx dS a, (7)

∫

VΓ

◦
wρ dΩ =

∫

Γ
n.σ.

◦
u dS + o(R), (8)

where we have taken account of the traction-free boundary condition σ.n = 0 along the
crack lips. The quantity o(R) is regular and tends to zero with the radius of the volume
VΓ.

The dissipation is rewritten finally as

Dm =

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ

+

∫

Γ

(n.σ.(v −
◦
u) + ρwn.ex a) dS + o(R) ≥ 0. (9)

The displacement u is continuous along the curve Γ. The condition of compatibility implies
Hadamard relations on the rates :

[u] = 0 ⇒ v =
◦
u −∇xu a. (10)

Then the dissipation is decomposed in two terms : a volume part due to irreversibility over
the body and a surface term associated with the propagation of the crack :

Dm = lim
R→0

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ

+ lim
R→0

∫

Γ
(−n.σ.∇xu + ρwnx ) dS a ≥ 0. (11)

Case of linear elasticity. In this case the local behaviour is reversible and the stress σ =

ρ
∂w

∂ε
, then there is no dissipation in the volume :

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ = 0. (12)

When Γ is reduced to the crack tip, the result is conserved :

lim
R→0

∫

ΩΓ

(σ : ε(v) − ρẇ) dΩ = 0. (13)

The global dissipation contains only the contribution of the crack :

Dm = lim
R→0

∫

Γ

(−n.σ.∇xu + ρwnx) dS a. (14)

The thermodynamical force associated with the propagation is the free energy release rate
G defined by :

G = lim
R→0

∫

Γ
(−n.σ.∇xu + ρwnx) dS. (15)
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Invariance of J-integral. Consider now S a closed loop inside a domain Ω, over which the
body forces are null. For an homogeneous linearly elastic material, the density ρ is uniform.
The stresses satisfy both the equations of state and the conservation of the momentum :

σ = ρ
∂w

∂ε
, div σ = 0 over Ω. (16)

Consider the integral C

C =

∫

S

(ρw nk − σijui,knj) dS, (17)

then by divergence theorem the integral is equal to
∫

ΩS

∂(ρw)

∂xk
−

∂(σijui,k)

∂xj
dΩ =

∫

ΩS

(σijεij,k − σijui,jk −
∂σij

∂xj
ui,k) dΩ. (18)

Using now the conservation of momentum, we find that the integral C is null.
From this result, it follows that the integral JΓ :

JΓ =

∫

Γ
(ρw nk − σijui,knj) dS, (19)

is independent of the choice of the loop Γ, taking account of the free-traction conditions
along the lips of the crack. Therefore

JΓ = lim
Γ→0

JΓ = G. (20)

Examples of non linear behaviour. For some classes of non linear material, the gradient
of the displacement presents discontinuities along surface S. In this case, the limit R → 0
must take these discontinuities into account. The jumps of gradient of displacement imply
jumps on velocities

[ v ]
S

+ a[ u,1 ]
S

= 0 (21)

In perfect plasticity [[3]] the release rate of energy determined by the dissipation is given
by

Js = lim
Γ→S

∫

Γ
(w(ε − εp)n1 − n.σ.u,1) ds (22)

where S is the surface along which the gradient of displacement has discontinuities:

[ u̇ ]
S

+ a[ u,1 ]
S

= 0 (23)

S is a shock surface or a shock line.

3. ENERGETICAL INTERPRETATION

For non linear material, the strain energy w depends on the strain ε and on internal
parameters α which describe hardening behaviour. The potential energy for the system
is :

E(u, α, l, Td) =

∫

Ω
ρ w(ε(u), α) dΩ −

∫

∂ΩT

Td.u dS, (24)

and the dissipation is rewritten as

Dm = Pe −
d

dt
(E +

∫

∂ΩT

Td.u dS) ≥ 0. (25)
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Taking account of the derivation of the potential energy with respect to its argu-
ments, we obtain :

d

dt
(E) =

∂E

∂u
.v +

∂E

∂α
.α̇ +

∂E

∂l
a +

∂E

∂Td
.Ṫ

d
. (26)

As
∂E

∂u
.v =

∫

∂Ω
n.σ.v −

∫

∂ΩT

Td.v dS,

∂E

∂α
.α̇ =

∫

Ω
ρ

∂w

∂α
α̇ dΩ

then

Dm = −
∂E

∂α
.α̇ −

∂E

∂l
a ≥ 0. (27)

Release rate of energy. For the system, the crack length plays the role of an internal
parameter. The thermodynamical force associated with the propagation is the release rate
of energy G obtained by the global state equation :

G = −
∂E

∂l
. (28)

In dynamical evolution the potential energy of the wall system must be replaced by
the Hamiltonian [4].

4. DUAL APPROACH IN LINEAR ELASTICITY

We study the propagation of a straight crack in direction e1 in a continuum Ω.
On the boundary ∂ΩT, the stress Td is imposed and on the complementary part ∂Ωu

the displacement is prescribed. The crack is stress free. In classical brittle fracture, the
constitutive behaviour is linear elastic. The strain energy w(ε) is a quadratic function of
the strain ε(u) which is associated to the displacement u :

w(ε) =
1

2
ε.C.ε, ε =

1

2
(gradu + gradt u). (29)

We denote by σ the value of the stress tensor associated with the strain σ = C : ε.
The evolution law for the crack is given in terms of energy release rate G and satisfies

the normality rule G − Gc ≤ 0; a ≥ 0a(G − Gc) = 0 ; where Gc is a characteristic of the
material

The energy release rate G is given in terms of potential energy E

E(u, l) =

∫

Ω(l)

w(ε) dΩ −

∫

∂ΩT

Td.u ds, (30)

G = −
∂E

∂l
=

∫

Γ
(w(ε)n1 − n.σ.u,1) ds = JΓ (31)

A state of equilibrium for a given lenght of crack l is defined by a displacement which
minimises E on the set of displacements u such that u = ud along ∂Ωu. The equilibrium
solution is usol(l, ud, Td).
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In the dual approach, the complementary energy is defined in terms of stresses

E∗(σ, l) = −

∫

Ω(l)
w∗(σ) dΩ +

∫

∂Ωu

n.σ.ud ds. (32)

Then the release rate of energy is the Bui’s dual integral [6]:

IΓ = JΓ =

∫

Γ

(−w∗(σ)n1 + n.σ,1.u) ds. (33)

The equality of the two integral is due to the fact that at a state of equilibrium for
the same crack length and the same boundary conditions, the potential energy and the
complementary energy are equals. This results is obtained taking account of the classical
relations

w∗(σ) + w(ε) = σ.ε,

∫

Vc

σ : ε(u) dΩ =

∫

C

n.σ.u ds. (34)

Lemma : For all stresses σ̃ which satisfy the equilibrium equation (div σ̃ = 0), and
for all strains ε̂ such that (2ε̂ = grad û+ gradt û) and for all closed volume with boundary
C, we have:

∫

C

(σ̃ : ε̂ ni − n.σ̃,i.û− n.σ̃.û,i) ds = 0 (35)

The two integrals IΓ et JΓ are independent of the close curve Γ. This can be shown
considering a close curve C composed by two curves Γ1 and Γ2 surrounding the crack tip
(VΓ1

⊂ VΓ2
) and by the crack lips.

We can introduce the local Eshelby tensors p and p∗:

p = w I − σ.∇u, p∗ = −w∗
I + ∇σ.u (36)

They satisfy

0 =

∫

Vc

div p dΩ =

∫

C

n.p ds, 0 =

∫

Vc

div p∗ dΩ =

∫

Vc

n.p∗ ds (37)

For the equilibrium solution w(ε) = w∗(σ) = 1
2σ : ε and then we obtain

p − p∗ = σ : ε I − (σ.∇u + ∇σ.u); p + p∗ = ∇σ.u − σ.∇u (38)

On the crack lips the contributions n.p.e1 and n.p∗.e1 vanish. This induces the invariance
of integrals IΓ and JΓ with respect to the choice of Γ, the constant values of which are
denoted by I and J respectively. Taking the properties of p and p∗ and the lemma into
account, for an equilibrium solution we obtain:

I + J =

∫

Γ
(n.σ,1.u− n.σ.u,1) ds (39)

J − I =

∫

Γ

(

(w + w∗)n1 − n.σ,1.u − n.σ.u,1

)

ds = 0 (40)



228 Claude Stolz

5. DUAL APPROACH IN ELASTOPLASTICITY

Case of perfect plasticity. The local behaviour is given by the free energy w(ε− εp) where
εp is the plastic strain, which evolution is governed by a normality rule associated with a
convex function f(σ) ≤ 0 such that

f(σ) ≤ 0; λ > 0, ε̇p = λ
∂f

∂σ
, λf = 0. (41)

We introduce the complementary energy for perfect plasticity:

w∗(σ) = σ : (ε − εp) − w(ε − εp) (42)

The definitions of both global energies E and E∗ are conserved with these new local den-
sities. For a given field of internal parameter, the equilibrium solution minimizes the
potential or the complementary energy, then it is obvious that

Is = Js = −
∂E

∂l
= −

∂E∗

∂l
, (43)

where the thermodynamical force Js is given in eq 22. Introducing the Eshelby tensors p

and p∗, they satisfy now

0 =

∫

Vc

div p dω +

∫

Vc

σ : ∇εp dω 0 =

∫

Vc

div p∗ dω −

∫

Vc

∇σ : εp dω (44)

for any closed volume which does not contain discontinuities. Using the properties of p

and p∗ the two integrals

G = JΓ +

∫

ΩΓ

σ : ε
p
,1 dΩ, G∗ = IΓ −

∫

ΩΓ

σ,1 : εp dΩ (45)

do not depend on Γ, and we find:

G + G∗ = 2Js =

∫

Γ
(n.σ,1.u − n.σ.u,1) dS +

∫

ΩΓ

(σ : ε
p
,1 − σ,1 : εp) dΩ,

G − G∗ = 0 =

∫

Γ
((w + w∗)n1 − n.σ,1.u − n.σ.u,1) dS +

∫

ΩΓ

(σ : εp),1 dΩ.

Adding these equations, we then take the limit Γ → S to obtain

G + G∗ = Is + Js =

∫

S

(n.[ σ,1 ]
S
.u − n.σ.[ u,1 ]

S
) ds; (46)

therefore we have

Is = lim
Γ→S

∫

Γ
(−w∗(σ)n1 + n.σ,1.u) ds. (47)

This generalizes the Bui’s dual-integral to perfect plasticity.
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Elastoplasticity with hardening. The local behaviour is defined by the local free energy
w(ε, α) where α is a set of internal parameters, and w is assumed to be convex of it’s
argument. The thermodynamical forces associated with these state variables are the stress
σ and the internal force A

σ =
∂w

∂ε
, A = −

∂w

∂α
. (48)

The complementary energy is defined as previously by

w∗(σ, A) = σ : ε − A.α − w(ε, α). (49)

For the equilibrium solution the stress σ satisfy the equilibrium div σ = 0 and the boundary
conditions n.σ = Td. The internal forces A are inside the domain of reversibility.

The Eshelby-tensors p and p∗ satisfy the properties

0 =

∫

Vc

div p dΩ +

∫

Vc

A.∇α dΩ ; 0 =

∫

Vc

div p∗ dΩ −

∫

Vc

∇A.α dΩ (50)

and by a reasoning analogous to those of perfect plasticity

G = JΓ +

∫

ΩΓ

A.α,1 dΩ , G∗ = IΓ −

∫

ΩΓ

A,1 : α dΩ. (51)

The property G = Js is conserved.
When the energy w is a quadratic function, at the equilibrium solution we have

(w = w∗ = 1
2σ : ε − 1

2A : α) and we obtain the peculiar form

G =
1

2

∫

Γ
(n.σ,1.u − n.σ.u,1) dS +

1

2

∫

ΩΓ

(A : α,1 − A,1 : α) dΩ. (52)

6. APPLICATION TO THE EVOLUTION OF CRACKS

For describing the evolution of cracks it is necessary to have an evolution law. We
consider that the evolution of a crack is governed by a generalized Griffith law

Js ≤ Gc, a = 0, Js = Gc, a ≥ 0. (53)

The evolution is governed by a normality rule : when Js = Gc then

J̇s(a − µ) ≥ 0, ∀µ ≥ 0, (54)

We need to charaterize the rate J̇s.

We consider the volume VΓ translating with the velocity a . The rate
◦

f is the rate
of f in the moving frame VΓ. The surface S has the same velocity of translation, then it’s
normal velocity is a e1.n. In the moving frame the variation of Js is well defined:

Ġ =

∫

S

[ σ ]
S

: ∇
◦
u −

◦
σ : [∇u ]

S
− [ A

◦
α ]

S
ds, (55)

which can be rewritten as

Ġ =

∫

Γ
(n.σ,1.

◦
u− n.

◦
σ.u,1) ds +

∫

ΩΓ

(
◦

A : α,1 − A,1 :
◦
α) dΩ. (56)
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The last term contains only coupling terms between strain and hardening, as we can shown

−
◦

A : α,1 + A,1 :
◦
α =

∂2w

∂α∂ε
• (

◦
ε ⊗ α,1 −

◦
α ⊗ ε,1) =

◦
σ : ε,1 − σ,1 :

◦
ε, (57)

then the rate is given by

Ġ =

∫

Γ
(n.σ,1.

◦
u − n.

◦
σ.u,1) ds +

∫

ΩΓ

(
◦
σ : ε,1 − σ,1 :

◦
ε) dΩ. (58)

This generalized the previous case obtained in [3] for perfect plasticity.

7. CONCLUSION

We have generalized the Bui’s dual integral to elastoplastic materials. We have
connected this integral to the release rate of potential and complementary energy in case
of elastoplastic behaviour with hardening.

With these definitions, the formulation of the evolution of cracks are determined by
a variational inequality as shown in [7]. The methods are identical as proposed in ([8],[9])
and allows stability and bifurcation analysis of a system of cracks.
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TÍCH PHÂN ĐỐI NGẪU TRONG CƠ HỌC PHÁ HỦY PHI TUYẾN

Chúng tôi đề xuất một hướng tiếp cận đối ngẫu trong cơ học phá hủy dựa trên năng
lượng phụ. Sự phân tích tiêu tán năng lượng chỉ ra rằng lực nhiệt động kết hợp với sự
phát triển của vết nứt là tốc độ giải phóng năng lượng tự do, mà dạng của nó phụ thuộc
vào sự có mặt hoặc không có mặt của sự không liên tục về mặt cơ học. Tốc độ giải phóng
năng lượng tự do này được cho dưới dạng tích phân dựa trên năng lượng tự do hoặc năng
lượng phụ. Chúng tôi phân tích tính bất biến của những tích phân này và chúng tôi thảo
luận các kết quả thu được trong bài toán đàn dẻo.


