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Abstract. This paper presents an energy-based low-cycle fatigue criterion that can be
used in analyzing and designing structures made from shape memory alloys (SMAs)
subjected to cyclic loading. Experimentally, a response similar to plastic shakedown is
observed: during the first cycles the stress-strain curve shows a hysteresis loop which
evolves during the first few cycles before stabilizing. By adopting an analogy with plastic
fatigue, it is shown that the dissipated energy of the stabilized cycle is a relevant pa-
rameter for estimating the number of cycles to failure of such materials. Following these
observations, we provide an application of the cyclic model, previously developed by the
authors within the framework of generalized standard materials with internal constraints
[16], in order to evaluate such parameter. Numerical simulations are presented along with
a validation against experimental data in case of cyclic superelasticity.
Keywords: cyclic loading, residual strain, internal stress, dissipation, fatigue.

1. INTRODUCTION

The interesting behavior of SMAs is essentially due to their capability of under-
going a reversible diffusionless solid–solid phase transition known as “the martensitic
transformation”[31, 24, 18]. This transition is characterized at the microscopic level by
a modification of the crystallographic lattice structure, which can be induced by altering
either the material temperature or the stress to which it’s subjected or both, hence a
strong thermomechanical coupling. At high temperature, a shape memory alloy consists
of a relatively ordered parent phase called austenite, which transforms when cooled into a
less ordered product phase called martensite. In the absence of stress, this leads to “self-
accommodation” of martensite plates, i.e. to the formation of lattice twins without any
macroscopic deformation.

Mechanical loading may lead to detwinning of self-accommodating martensite. In
this case, martensite plates become oriented according to privileged directions that depend
on the applied stress. The resulting inelastic macroscopic strain usually reaches several per-
cent; it can be recovered by heating, in which case the SMA regains its initial undeformed
austenitic shape. Simple way shape memory refers to the ability of a shape memory alloy
to remember its high temperature state.
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Beside the characteristic shape memory behavior SMAs exhibit other interesting
effects, namely: superelasticity or pseudoelasticity, which is the ability of a shape memory
alloy to accommodate large strains due to stress-induced phase change at a constant,
sufficiently high temperature and to recover its undeformed shape upon unloading; and
the superthermal effect, which is the ability to deform an initially austenitic SMA by
cooling under constant stress and then to recover the austenitic shape by heating. The
magnitude of the temperature-induced strains depend on the applied stress.

Furthermore, cyclic loading may allow SMAs to have a “two-way shape memory
effect”. In this case, the material can change its shape reversibly due to cyclic heating-
cooling.

Since components made of SMAs usually operate under cyclic thermomechanical
loading; their design requires reliable prediction of the material’s cyclic 3D response and
fatigue resistance. In this regard, several models exist that are capable of handling cyclic,
mainly superelastic, SMA behavior [9, 1, 8, 26, 7, 35, 34, etc.].

The interesting properties of SMAs promoted their use in several fields, especially
in outer space (antennas, braces) and in medical applications (orthodontia, cardiology,
implants miniaturization, etc.). SMAs are also becoming increasingly attractive for au-
tomotive, nuclear and civil engineering applications, mainly due to their high damping
capacity.

One of the main difficulties facing their use in technologically advanced applications
with high security specifications concern the poorly known fatigue behavior of these alloys
as well as the amnesia phenomena encountered with shape memory properties. A better
knowledge and control of these two aspects should promote their use. Two types of fatigue
have to be considered :

First, classical mechanical fatigue due to mechanical cycling in the pseudoelastic
domain [14, 29]. The objective is to determine the number of cycles before failure. For
instance, SMA are used in the biomedical field to manufacture stents, endovascular pros-
thesis inserted in blood vessels to avoid thrombosis and occlusion of the vessels. In stents,
cyclic loads would arise from the difference in systolic and diastolic blood pressures and
from the stress associated with the contraction of the heart muscle (e.g. see [10]). It is of
primary importance to know the number of cycles before any damage occur to the stent.

Second, thermal fatigue or amnesia of the material, due to a degradation of the
material characteristics responsible for the shape memory effect, like the transformation
temperatures. The question is to determine if the material remains able to remember its
initial shape.

Fatigue of shape memory alloys has also attracted considerable attention [11, 12, 13,
30, 28, 21]; it is still, however, not very well understood. Particularly, fatigue mechanisms
at the microscopic level are still being investigated [25, 22]. Nevertheless, Manson–Coffing-
type criteria have been successfully used for predicting fatigue induced failure of simple
SMA structures subjected to uniaxial loading [11, 25, 30]. Like in classical elastoplastic
materials, such as steel, the number of cycles to failure of a SMA varies depending on
its composition and on the applied loading, among other factors. This number may range
from 104 cycles for thermal valves using one-way shape memory effect [4] to a nominal
4 × 108 cycles for stents [15].
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Using the analogy with plastic fatigue (low-cycle fatigue) [5, 3], [17] established a
relation between the amount of dissipated energy associated with the stabilized hysteresis
cycle and the number of cycles to failure. In this paper, we provide an application of the
cyclic model, developed previously by the authors within the framework of generalized
standards materials with internal constraints [18], in order to simulate the dissipated
energy at the stabilized cycle. Our aim here is to shown that the cyclic model can be
combined with the fatigue criterion in order to predict low-cycle failure of superelastic
shape memory structures.

The paper is organized as follows:
First, section (2) is devoted to the presentation of the cyclic Zaki–Moumni model

where the behavior is described using three state variables representing residual strain
induced by cyclic loading, internal stress induced by repeated phase change and the cumu-
lated martensite volume fraction. The reader is referred to [33, 34] for a detailed discussion
of the model.

Second, the low cycle fatigue law and numerical simulations of the dissipated energy
at the stabilized cycle along with a validation against experimental data in case of cyclic
superelasticity are presented in section (3).

The conclusion of the work is given in section (4).

2. THE CYCLIC MODEL OF SMA BEHAVIOR

2.1. Experimental observations

Figure 1 illustrates the response of a Nickel–Titanium wire to repeated tension.
Some observations can be made:

Strain (%)

S
tr

es
s

(M
P

a)

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

Number of cycles

R
es

id
u
al

st
ra

in
(%

)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Fig. 1. Cyclic superelastic tensile response of
a NiTi wire. The characteristic hysteresis loop
tends to stabilize when the number of cycles
increases

Fig. 2. Residual strain vs the number of cycles

- Recovery of inelastic strain is not complete at the end of each cycle. Indeed, after
complete unloading, some residual strain remains. This strain increases exponentially with
the number of cycles, as shown in figure 2.
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- Forward phase change yield stress decreases with increasing number of cycles
(figure 3).
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Fig. 3. Forward phase change yield stress vs the number of tensile loading cycles

- The hysteresis loop evolves progressively with the number of cycles before stabi-
lizing. In figure 1, the stabilized loop is shown in continuous dark line.

Residual strain is generally considered to be due to some oriented martensite not
transforming back into austenite during reverse phase change [7, 2]. Repeated forward and
reverse phase changes create some defects within the material [1], which result in localized
internal stresses [26], allowing SMAs to exhibit two-way shape memory, the material is said
to be trained (training phenomena). The internal stress eliminates the need for external
loading in order to orient martensite variants. As a result, the shape memory structure
can assume two different shapes when temperature varies: an austenitic undeformed shape
at high temperature and a deformed low-temperature shape resulting from martensite
orientation due to internal stress.

2.2. Phenomenological model

For full details regarding the model presented in this section, the reader is referred
to [32, 33, 34] [18].

As seen in the previous section, macroscopic cyclic response of superelastic SMAs
induces residual inelastic strains and localized internal stresses within the material. Hence,
two state variables are introduced: a residual strain tensor εr and an internal stress tensor
B. A third variable, ze, representing cumulated martensite volume fraction is also used:

ze =

∫ t

0

|ż| dτ , (1)

where t is a kinematic time. The effect of cyclic loading on the material parameters can
be modeled by considering these parameters to depend on ze.

2.2.1. State variables and free energy

The following state variables are considered:
- Macroscopic strain ε and temperature T ;
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- Volume fraction z and cumulated volume fraction ze of martensite;
- Local strain tensors: εa for austenite and εm for martensite;
- Local martensite transformation strain tensor εtr;
- Internal stress B and residual strain εr.
Phase change latent heat is assumed to depend on the cumulated fraction ze. Re-

spective free energy densities of austenite and martensite are taken to be

Wa

def
= Wa (εa, εr) =

1

2
(εa − εr) :Ka : (εa − εr) , (2)

and

Wm = Wm (εm, εtr, εr, T, B, ze)

=
1

2
(εm − εtr − εr) :Km : (εm − εtr − εr) + C (T, ze) −

2

3
B :εtr.

(3)

B : εtr in the expression of Wm allows modeling the two-way shape memory effect. It
represents a modification of the free energy of martensite due to the creation of inter-
nal stresses, which allows austenite to transform more easily into oriented martensite.
Subsequent sections will help clarify this idea, especially when phase change criteria are
established.

The contribution of austenite–martensite interaction to the SMA free energy density
is assumed to be

I = I (z, ze, εtr) = G
z2

2
+

z

2
[αz + β (1 − z)]

(

2

3
εtr :εtr

)

. (4)

G, α and β are material parameters functions of the cumulated martensite volume fraction

ze (G = Ĝ (ze) , α = α̂ (ze) and β = β̂ (ze) ):

• β
z (1− z)

2

(

2

3
εtr :εtr

)

represents interaction between austenite and martensite.

Following many published works [6, 23, 19, etc.], this interaction is taken to be proportional
to the volume fractions of interacting phases. β determines how a mechanical loading
applied to an initially austenitic shape memory material affects martensite orientation
during phase change;

• G
z2

2
quantifies orientation-independent interaction between martensite variants;

• Finaly, α
z2

2

(

2

3
εtr :εtr

)

accounts for interaction increase due to orientation of

martensite plates; its expression is similar to that of the energy contribution due to linear
kinematic hardening of an elastoplastic material with hardening coefficient α. α controls
the slope of the stress–strain curve corresponding to martensite orientation.
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Finally, the free energy density of the material is given by

W
def
= W (ε, T, εa, εm, z, εtr, εr, B, ze)

= (1 − z)

[

1

2
(εa − εr) :Ka : (εa − εr)

]

+ z

[

1

2
(εm − εtr − εr) :Km : (εm − εtr − εr) + C (T, ze)

]

+ G
z2

2
+

z

2
[αz + β (1 − z)]

(

2

3
εtr :εtr

)

−
2

3
zB :εtr.

(5)

2.2.2. Internal constraints and Lagrangian

State variables obey the following constraints:
- Martensite volume fraction is necessarily within the [0, 1] interval.

z > 0, (6)

(1 − z) > 0; (7)

- The equivalent transformation strain

√

2

3
εtr :εtr has a maximum value γ that

varies with respect to the cumulated volume fraction ze.

γ −

√

2

3
εtr :εtr > 0, γ

def
= γ̂ (ze) . (8)

Constraints given by (6) to (8) are assumed to be perfect. They derive from a
constraints potential

Wl = −λ : [(1− z) εa + zεm − ε] − µ

(

γ −

√

2

3
εtr :εtr

)

− ν1z − ν2 (1− z) . (9)

where λ ν1, ν2 and µ are Lagrange multipliers. ν1, ν2 and µ, associated with unilateral
constraints, must obey the following conditions:

ν1 > 0, ν1z = 0, ν2 > 0, ν2 (1 − z) = 0 and µ > 0, µ

(

γ −

√

2

3
εtr :εtr

)

= 0. (10)

The sum of the free energy W and of the constraints potential Wl gives the La-
grangian L.

L =W + Wl
def
= L (ε, T, εa, εm, z, εtr, εr, B, ze)

= (1 − z)

[

1

2
(εa − εr) :Ka : (εa − εr)

]

+ z

[

1

2
(εm − εtr − εr) :Km : (εm − εtr − εr) + C (T, ze) −

2

3
B :εtr

]
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+ G
z2

2
+

z

2
[αz + β (1 − z)]

(

2

3
εtr :εtr

)

− λ : [(1 − z) ε1 + zε2 − ε]− µ

(

γ −

√

2

3
εtr :εtr

)

− ν1z − ν2 (1 − z) ,

(11)

where conditions (10) must be met.

2.2.3. State equations

Phase change, martensite orientation, training, as well as the creation of residual
strain and internal stress are dissipative processes. Thus, if Az, Atr, Ae, Ar and AB repre-
sent thermodynamic forces associated with state variables z, εtr, ze, εr and B respectively;
only these forces may take non-zero values during a given transformation. Hence the state
equations

∂L

∂ε
= σ ⇒ λ − σ = 0, (12)

−
∂L

∂εa

= 0 ⇒ (1 − z) [Ka : (εa − εr) − λ] = 0, (13)

−
∂L

∂εm

= 0 ⇒ z [Km : (εm − εtr − εr)− λ] = 0, (14)

−
∂L

∂z
= Az ⇒ Az =

1

2

[

(εa − εr):Ka : (εa − εr)

− (εm − εtr − εr) :Km : (εm − εtr − εr)
]

(15)

− C (T, ze) − Gz −

[

(α − β) z +
β

2

](

2

3
εtr :εtr

)

− λ : (εa − εm) +
2

3
B :εtr,

−
∂L

∂εtr

= Atr ⇒ Atr = z

{

Km : (εm − εtr − εr)−
2

3
[αz + β (1 − z)] εtr

}

(16)

+
2

3
zB −

2µ

3

εtr
√

2

3
εtr :εtr

,

−
∂L

∂εr

= Ar ⇒ Ar = (1 − z)Ka : (εa − εr) + zKm : (εm − εtr − εr) , (17)

−
∂L

∂λ
= 0 ⇒ (1 − z) εa + zεm − ε = 0, (18)

−
∂L

∂B
= AB ⇒ AB =

2

3
zεtr, (19)

−
∂L

∂ze

= Ae ⇒ Ae = −z
∂C (T, ze)

∂ze

−
∂G

∂ze

z2

2
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−
z

2

[

∂α

∂ze

z +
∂β

∂ze

(1− z)

](

2

3
εtr :εtr

)

− µ
∂γ

∂ze

. (20)

Equations (12), (13), (14) and (18) allow establishing the following stress–strain relation:

σ = K: (ε − zεtr − εr) . (21)

K is the equivalent SMA elastic moduli tensor. It is given by

K =
[

(1 − z) K
−1

a
+ zK

−1

m

]

−1
. (22)

2.2.4. Yield functions and evolution laws

Residual strain and internal stress depend on the number of loading cycles. Indeed,
as shown in figure 2, residual strain is found to increase exponentially with respect to the
number of cycles up to an asymptotic value εsat

r . From a theoretical point of view, this
can be simulated using the following evolution law:

ε̇r =
εsat
r

τ

(

3

2

s

σvm

)

exp
(

−
ze

τ

)

że. (23)

Residual strain is considered to be deviatoric, not inducing any volume change. τ is a
time constant and εsat

r the maximum residual strain in tension when the hysteresis loop
stabilizes, s is the deviatoric part of the stress tensor and σvm is the equivalent Von Mises
measure on the stress tensor.

Dissipation due to the evolution of εr is necessarily positive. Indeed, it can easily
be shown that Ar is unconditionally equal to the stress tensor σ; Ar : ε̇r is hence positive.

Similarly, the evolution of internal stress B is assumed to be governed by the fol-
lowing equation:

Ḃ =
Bsat

τ









2

3

εtr
√

2

3
εtr :εtr









exp
(

−
ze

τ

)

że, (24)

where Bsat is a positive scalar.
(24) expresses an increase in equivalent internal stress with respect to the number of

cycles. Given the expression of the thermodynamic force AB associated with state variable
B, dissipation AB :Ḃ is positive.

Because the evolution of state variables εr, B and ze is related to that of the marten-
site volume fraction, one does not need define specific yield functions for each of these
variables. Nevertheless, three yield functions: F 1

z , F 2
z and Fori are needed in order to de-

scribe forward phase change, reverse phase change and orientation of martensite variants.
Thermodynamic forces Az and Atr are chosen to be such that

Az ∈ ∂żD, (25)

Atr ∈ ∂ε̇tr
D, (26)
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where D is a convex, positive, continuous function that is equal to zero at the origin:

D
def
= D (ż, ε̇tr)

= P (z, ze, ż) ż + R (z)

√

2

3
ε̇tr : ε̇tr,

(27)

P (z, ze, ż) is given by
P (z, ż) = [a (1 − z) + bz] sign ż, (28)

a and b being ze-dependent parameters:

a = â (ze) and b = b̂ (ze) . (29)

Moreover,
R (z) = z2Y , (30)

where Y is a constant material parameter. It is easy to show that Y , a and b are always
positive; D is hence positive. Hence, evolution equations (25) and (26) necessarily satisfy
the Clausius–Duheim inequality.

From this point on, austenite and martensite are considered to be homogeneous and
isotropic media, having the same Poisson coefficient ν.

νa = νm

def
= ν. (31)

Table 1 summarizes the notations used throughout this paper.

Table 1: Notations used in this paper.

Notation Meaning Expression

Ea Young modulus of austenite
Em Young modulus of martensite

Eeq Equivalent Young modulus

(

1 − z

Ea

+
z

Em

)

−1

ν Poisson coefficient of the material

Ela
1 + ν

Ea

Elm
1 + ν

Em

Pa

−ν

Ea

Pm

−ν

Em

Elma Elm − Ela

Pma Pm − Pa

trM Trace of symmetrical tensor M

∑

i

Mii

(continued on next page)
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(suite)

Notation Meaning Expression

dev M Deviator of M M −
1

3
(trM) I

Mvm Von Mises equivalent of M

√

3

2
dev M:dev M

s Stress deviator tensor dev σ

σvm Von Mises equivalent stress

√

3

2
s :s

µa Austenite shear modulus
Ea

2 (1 + ν)

µm Martensite shear modulus
Em

2 (1 + ν)

µeq Equivalent shear modulus
Eeq

2 (1 + ν)

Using equations (25) and (26), the following expressions of F 1
z , F 2

z and Fori can be
established:

F 1

z =

{

1

3
Elmaσ

2

vm
+

1

2

(

1

3
Elma + Pma

)

( trσ)2 − C (T, ze)

}

(32)

+

(

σ +
2

3
B

)

:εtr

− (G + b)z − a (1 − z)−

[

(α − β) z +
β

2

](

2

3
εtr :εtr

)

,

F 2

z = −

{

1

3
Elmaσ

2

vm
+

1

2

(

1

3
Elma + Pma

)

( trσ)2 − C (T, ze)

}

(33)

−

(

σ +
2

3
B

)

:εtr

+ (G − b)z − a (1 − z) +

[

(α − β) z +
β

2

](

2

3
εtr :εtr

)

,

Fori =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

σ +
2

3
B

)

−
2

3
[αz + β (1 − z)] εtr −

2µ

3z

εtr
√

2

3
εtr :εtr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vm

− zY . (34)

It is worth noting that in each of these expressions, a quantity
2

3
B, proportional to

internal stress due to training, is added to the stress tensor σ. Thus, both B and σ have
similar effects as to phase change and martensite orientation.

Phase change evolution laws obey certain conditions:
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- If F 1
z < 0 and F 2

z < 0, no phase change can occur. Hence,

ż = 0; (35)

- If forward phase change is triggered, F 1
z is equal to zero. In this case, ż is equal to

zero if Ḟ 1
z < 0; otherwise, ż is given by the consistency condition Ḟ 1

z = 0;
- If reverse phase change is triggered, F 2

z is equal to zero. In this case, ż is equal to

zero if Ḟ 2
z < 0; otherwise, ż is given by the consistency condition Ḟ 2

z = 0. Let

X
def
=

(

s +
2

3
B

)

−
2

3
[αz + β (1 − z)] εtr −

2µ

3z

εtr
√

2

3
εtr :εtr

. (36)

The yield function Fori, associated with martensite orientation, can be written as

Fori = Xvm − zY . (37)

Evolution of local inelastic strain tensor εtr satisfies the normality law:

ε̇tr = η
∂Fori

∂X

=
3

2
η

X

Xvm

.

(38)

In the above equation, η is a positive scalar satisfying Kuhn–Tucker conditions:

η > 0, Fori 6 0 and ηFori = 0. (39)

Let σrs and σrf be orientation start and finish stresses of self-accommodating marten-
site:

- When orientation starts, yield function Fori is necessarily equal to zero for εtr = 0,
||σ + B||

vm
= σrs and µ = 0. It follows that

Y = σrs; (40)

- When orientation is complete, Fori = 0 for

√

2

3
εtr :εtr = γ. If

√

2

3
εtr :εtr tends

towards γ with lower values, µ is equal to zero for ||σ + B||
vm

= σrf. In case of uniaxial
tension, it follows that

|σrf − αγ| = Y ; (41)

the above equation, together with equation (40), gives α as a function of γ:

α =
σrf − σrs

γ
. (42)

- When austenite transforms into oriented martensite, orientation is complete when
stress becomes greater or equal to σrf. Particularly, if stress tends towards σrf with lower
values, µ remains equal to zero. In this case,

z = 0, ||σ + B||
vm

= σrf,

√

2

3
εtr :εtr = γ and µ = 0. (43)

In case of uniaxial tension,

β =
σrf

γ
. (44)
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α and β are both functions of ze due to their dependence on γ.
Finally, explicit expressions of the evolution laws can be derived using the consis-

tency conditions.

2.3. Numerical simulation

Figure 4 shows the experimental response of a NiTi test sample to repeated uniaxial
tension.

Strain (%)

S
tr

es
s

(M
P

a)

cycle 1
cycle 2
cycle 3
cycle 4
cycle 8
cycle 12
cycle 20

0 0:5 1 1:5 2
0

50

100

150

200

250

300

350

400

Number of cycles

R
es

id
u
al

st
ra

in
(%

)

0 2 4 6 8 10 12 14 16 18 20
0

0:1

0:2

0:3

0:4

0:5

0:6

Fig. 4. Experimental stress–strain response of
a NiTi wire to repeated tension. The stabilized
cycle is shown in continuous line.

Fig. 5. Residual strain evolution with respect
to the number of tension cycles.

Residual strain evolution with respect to the number of cycles is shown in figure 5.
The Nickel–Titanium used in the experiments has an orientation start stress of 80 MPa and
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Fig. 6. Experimental vs numerical results. Evolution of
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an orientation finish stress equal to 160 MPa. Reverse transformation finish temperature
of the untrained material at zero stress is equal to 42 ◦; this temperature does not evolve
considerably with the number of cycles.

Figure 6 shows good agreement between experimental and numerical results in the
case of repeated tension. For clarity, only loops 2, 4 and 12 are shown.

Figure 7(a) illustrates the evolution of internal strain B with respect to the cu-
mulated martensite volume fraction ze. Stress–strain response for all 20 loading cycles is
shown in figure 7(b).
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Fig. 7. Prediction of Nickel–Titanium response to repeated tension.

The next section is devoted to the presentation of an energy approach of the fatigue
of shape memory alloys. It is shown how the cyclic model presented in the previous section
can be combined with the fatigue criterion in order to perform numerical calculations of
the fatigue parameters necessary for the evaluation of life time of structures made on
SMAs.

3. AN ENERGY APPROACH OF THE FATIGUE OF SHAPE MEMORY

ALLOYS

Fatigue of shape memory alloys is generally explained by the creation and propaga-
tion of defects within the material at the microscopic level [11]. A more rigorous under-
standing is complicated, however, due to phenomena like formation of residual martensite
[25] and local phase change at the tip of microscopic cracks [30], resulting in slower crack
propagation in martensite [4].

Because of similar damage creation and propagation mechanisms, it is interesting to
investigate the fatigue of SMAs within a framework similar to that of usual elastoplastic
materials (like steel). It is, hence, useful to distinguish between:

• Low-cycle fatigue;
• Finite fatigue life in high cycle fatigue;
• High cycle fatigue (infinite life).
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This section focuses on low-cycle fatigue associated with cyclic superelasticity.

3.1. Experimental analysis

3.1.1. Material and thermomechanical treatment

The material is a 51,3 %Ti–48,7 %Ni in mass Nickel–Titanium with a grain size
between 60 µm and 70 µm cf. figure 8. Phase change temperatures at zero stress are as
follows: M0

f = 25 ◦C, M0
s = 39 ◦C, A0

s = 29 ◦C and A0

f = 42 ◦C.

Fig. 8. Metallographic structure of the NiTi alloy.

All the test specimens were cold worked up to 20 % in tension, then heat treated
at 400 ◦ C for one hour. This kind of treatment increases the plastic yield limit of the
material while improving its superelasticity [31].

3.1.2. Experimental setup

The testing machine used is a force controlled MTS810/100KN. The strains are
measured using an MTS extensometer model 632-13C-21. Load and extensometer signals
are captured by an MTS TestStarII data acquisition board and processed by a computer.
Experiments are Stress-controlled push-pull tests with a constant amplitude σa. They are
carried out at a frequency of 0.3 Hz. In order to ensure that the tests are performed in the
pseudoelatic domain the temperature is kept constant at T = 50 ◦C which is higher than
the austenite finish temperature A0

f . The experiments were conducted in a SERVATHIN
hermetic enclosure where the temperature can be regulated and kept constant through a
range values from −50 ◦C to 200 ◦C. Maximum stress was kept below the critical stress
for slip (750 MPa) to ensure that no macroscopic plastic deformations occurs. The tests
were take through to rupture of the specimen.

In order to examine the effect of mean stress on the fatigue of Nickel–Titanium,

three load ratios (R =
σmin

σmax

) were considered, equal to 0, 0.2 and -1 repesctively. The

geometries of the specimens we used are illustrated in figures 9(a) and 9(b).
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l = 49 mm

L = 106 mm

ˆ = 15 mm

ˆ = 10 mm
ˆ = 6,18 mm

(a) For R = 0.

l = 12 mm

L = 120 mm

40 mm

10 mm

ˆ = 8 mm

ˆ = 15 mm
ˆ = 19 mm

(b) For R = 0.2,−1.

Fig. 9. Geometries of specimens used for cyclic experiments.

3.2. Results and discussions

3.2.1. S-N curves

The S-N curves (Wöhler curves) relating the number of cycles to failure under
uniaxial loading to the amplitude of the applied stress obtained for these experiments are
shown on figure 10.
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Fig. 10. Wöhler curves of Nickel–Titanium for
different mean stress values.

Fig. 11. Stabilization of the amount of dissi-
pated energy per cycle, Wd, with the number
of cycles: experimental result.

The effect of mean stress on fatigue life can be observed. Indeed, a higher mean
stress corresponds to a lower number of cycles to failure.

These Wöhler curves can be used for fatigue life prediction when the applied loading
is uniaxial and for a given mean stress. They are inadequate, however, for fatigue analysis
of shape memory structures under multiaxial loading.
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3.2.2. Low-cycle fatigue life prediction for superelastic SMAs

Existing SMA low-cycle fatigue life prediction models are mostly of the Manson–
Coffin type: the number of cycles to failure is related to the amplitude of plastic strain.

As early as 1979, showed that, for different types of shape memory alloys, fatigue
life of wires follows the Manson–Coffin law. This result has been confirmed in several
subsequent papers [27, 30].

Even though multiaxial loading can be accounted for theoretically by means of
a generalized Manson–Coffin relationship using equivalent plastic strain, the ability to
predict 3D structure failure using this approach has not been proved.

In the scope of this paper, an energy-based approach is used for estimating low-cycle
fatigue life of superelastic SMAs.

This is inspired from [3], where a similar approach was successfully applied on cast
iron. Indeed, superelastic hysteresis stabilization for a shape memory material is similar
to plastic shakedown of cast iron. In both cases, inelastic (plastic deformation for iron cast
and transformation strain for SMAs) deformation is confined but the material continues to
dissipate energy. Energy dissipation is usually explained, in the case of superelastic SMAs,
by strain incompatibilities across the boundaries of the grains [12], which in time lead to
the creation and accumulation of deffects at the boundaries [11].

In this paper, the martensitic transformation, responsible for the creation of marten-
site grains, is accounted for using state variables z and εtr. Given the above interpretation
of energy dissipation in SMAs, the inelastic deformation zεtr, being proportional to the
number of martensite grain boundaries (through state variable z) and to the level of
orientation of martensite variants within these grains, seems an adequate parameter for
predicting fatigue failure of superelastic SMAs.

The amount of dissipated energy per loading cycle, Wd, is given by

Wd =

∮

σ :dε. (45)

Once the material response stabilizes, this energy becomes constant, as shown by the
experimental result given in figure 11 (stress ratio = 0).

In the case of the studied Nickel–Titanium, an example of the evolution of the
dissipated energy with respect to the number of cycles is illustrated in figure 12. Even
though the use of dissipated energy per cycle for fatigue life prediction has been criticized
[5, 20], its usefulness in practice is well proven: the work of [3] has been successfully applied
to predicting failure of automotive components subjected to complex thermomechanical
loading.

Figure 13 represents the amount of dissipated energy per cycle, Wd, with respect to
the number of cycles to failure Nf, using a log–log scale.

The figure shows a quasi-linear dependence of logWd on log Nf for several values
of the mean stress. It is, hence, interesting to approximate experimental results using the
following curve [17]:

Wd = αN
β
f
, (46)

where α and β are material parameters. Numerical results are in good agreement with
experimental data for α = 11 and β = −0.377, as shown in figure 14.
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Fig. 13. Dissipated energy per cycle vs num-
ber of cycles to failure.
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Fig. 15. Numerical results. Dissipated energy
per cycle with respect to the number of cycles:
numerical result for ∆σ = 400Mpa.

Expression (46) may readily be used for 3D structure analysis because dissipated
energy per cycle is well defined and its calculation is straightforward.

The stabilized cycle and the corresponding amount dissipated energy to the sta-
bilized cycle can be numerically determined using the model presented in this paper as
shown in figure 15.

The number of cycles to failure of a SMA structure can be estimated using the
suggested fatigue criterion. It is important to note, however, that the validity of this
criterion has only been proven in the case of uniaxial loading; its ability to predict failure
of structures subjected to complicated loading conditions remains to be established.
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4. CONCLUSION

In the first part of this paper a model capable of simulating several phenomena
associated with shape memory materials subjected to cyclic loading is presented. The
modeling process is based on a simple observation: on the macroscopic level, SMA training
can be interpreted as a thermomechanically-induced transition from an unstable, virgin
material configuration into a stable one. From a theoretical point of view, it is easy to
account for this transition by making some of the model parameters depend on a cumulated
martensite volume fraction which evolves with the applied loading.

Inelastic residual strain, which appear during repeated phase change, is accounted
for by introducing a state variable similar to plastic deformation strain of classical elasto-
plastic materials. Numerical results show good agreement with available experimental
data.

The second part of the paper investigates the fatigue of SMAs by analogy with
plastic fatigue. It has been shown that the dissipated energy at the stabilized cycle during
a cyclic loading is a relevant parameter for fatigue life prediction. A relationship between
this parameter and the number of cycle to failure has been derived from experimental
results. It has also been shown that the cyclic model can be combined with the fatigue
criterion in order to predict low-cycle failure of superelastic shape memory structures.

Nevertheless, it is clear that the model must be improved on some points. First, it is
important to investigate the fatigue of SMAs criterion for another type of loading, namely
torsion. Second, it is interesting to check the validity of the model against experimental
results for complex structures under complex loading. This work is undertaken and will
be presented in future papers.
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pseudoelastic NiTi shape memory wires. Materials Science and Engineering A, 378:105–109,
2004.

[31] C.M. Wayman and K. Otsuka, editors. Shape Memory Alloys. Cambridge University Press,
1999.

[32] W. Zaki. Comportement thermo-mécanique des matériaux à mémoire de forme. PhD thesis,

École Polytechnique, 2006.
[33] W. Zaki and Z. Moumni. A three-dimensional model of the thermomechanical behavior of

shape memory alloys. Journal of the Mechanics and Physics of Solids, 55:2455–2490, 2007.
[34] W. Zaki and Z. Moumni. A 3d model of the cyclic thermomechanical behavior of shape

memory alloys. Journal of the Mechanics and Physics of Solids, 55:2427–2454, 2007.
[35] Z.Bo and D.Lagoudas. Thermomechanical modeling of polycrystalline SMAs under cyclic

loading, part I: theoretical derivations. International Journal of Engineering Science 37
(1999) 1089–1140, 1999.

Received September 30, 2009

ỨNG XỬ TUẦN HOÀN VÀ PHƯƠNG PHÁP NĂNG LƯỢNG VỀ MỎI CỦA
CÁC HỢP KIM NHỚ HÌNH DẠNG

Bài báo này trình bày một tiêu chuẩn mà có thể được sử dụng trong việc phân tích và thiết
kế các kết cấu tạo bởi các hợp kim nhớ hình dạng (SMAs) chịu tải trọng tuần hoàn. Một cách
thực nghiệm thì một phản ứng tương tự như shakedown dẻo sẽ được quan sát: trong các chu kỳ
đầu tiên thì đường cong ứng suất-biến dạng sẽ mô tả vòng lặp trễ mà nó phát triển trong vài chu
kỳ đầu tiên trước khi ổn định. Bằng việc ứng dụng một sự tương tự trong mỏi dẻo thì năng lượng
tiêu tán của một chu kỳ là một tham số thích hợp cho việc ước lượng số chu kỳ để làm hỏng các
vật liệu như vậy. Tuân theo những quan sát như vậy chúng tôi trình bày một ứng dụng của mô
hình tuần hoàn mà đó được tác giả phát triển trước đó trong khuôn khổ các vật liệu tiêu chuẩn
tổng quát hóa với các ràng buộc Moumni (1995) để đánh giá tham số này. Các mô phỏng số đó
được trình bày cùng với các số liệu kiểm chứng bằng thực nghiệm trong trường hợp siêu dẻo tuần
hoàn. Từ khóa: tải trọng tuần hoàn, biến dạng dư, ứng suất nội, tiêu tán, mỏi


