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AN INEQUALITY FOR A QUADRATIC FUNCTIONAL
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Abstract. An inequality is proved for a quadratic functional with the logarithmic kernel.
The best constant of this inequality and the corresponding function for which the equality
holds are found precisely.

The aim of this short communication is to provide one inequality for the following
quadratic functional

−

∫ b

a

∫ b

a

ln |x − y|ϕ′(x)ϕ′(y) dxdy, (1)

where ϕ(x) are functions defined on the finite interval (a, b) such that

ϕ(x) = φ(x)w(x), w(x) =
√

(b − x)(x− a),

with φ(x) ∈ W 1,2(a, b). Let W̃ (a, b) be the space of all such functions. The norm in this
function space is defined as the weighted norm

‖ϕ‖W̃ = ‖ϕ/w‖W 1,2 = ‖φ‖W 1,2.

The quadratic functional (1) appears in connection with various problems of physics and
mechanics, for instance, the crack problems [1, 2, 3, 4, 5, 6], the dislocation pile-up prob-
lems [7, 8, 9], and the Peierls-Nabarro and Benjamin-Ono equations (see [10, 11] and the
references therein). Because of the singularity of the logarithmic kernel, the double integral
in (1) should be defined as

−

∫ b

a

∫ b

a

ln |x − y|ϕ′(x)ϕ′(y) dxdy = − lim
ε→0

∫

Sε

ln |x − y|ϕ′(x)ϕ′(y) dxdy, (2)

where Sε is the square (a, b)× (a, b) in the (x, y)-plane with the diagonal band of height
2ε being removed

Sε = {(x, y)| a < x < b, a < y < b, |x− y| > ε}.

Note that, by the partial integration with respect to x, one can present (2) in the form

−

∫ b

a

∫ b

a

ln |x− y|ϕ′(x)ϕ′(y) dxdy = −

∫ b

a

−

∫ b

a

ϕ′(y)

y − x
dyϕ(x) dx, (3)
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where −
∫

denotes Cauchy’s principal value of the integral. Note also the close connection
of (3) with the capacity of the logarithmic potential induced by a 2-D continuous charge
distribution on the interval (a, b).

It turns out that the following inequality holds true for this functional: there exists
a positive constant α > 0 such that for all ϕ ∈ W̃ (a, b)

−

∫ b

a

∫ b

a

ln |x − y|ϕ′(x)ϕ′(y) dxdy ≥ α

∫ b

a

ϕ2(x) dx. (4)

By changing the variable x 7→ (2x− a− b)/(b− a) if needed one can achieve that a = −1
and b = 1. Therefore, to prove (4) it is sufficient to show that there exists a positive
constant µ such that for all Φ(x) ∈ W̃ (−1, 1)

−

∫ 1

−1

∫ 1

−1

ln |x − y|Φ′(x)Φ′(y) dxdy ≥ µ

∫ 1

−1

Φ2(x) dx. (5)

The proof of (5) is based on the expansion of Φ into the series of weighted Cheby-
shev’s polynomials

Φ(x) =
∞
∑

n=0

φnUn(x)w(x), w(x) =
√

1 − x2, (6)

with Un(cos θ) = sin(n + 1)θ/ sin θ. Using formula (3) and the following properties of
Chebyshev’s polynomials [12]

−−

∫ 1

−1

(Un(y)w(y))′

y − x
dy = π(n + 1)Un(x),

∫ 1

−1

Un(x)Um(x)w(x) dx =
π

2
δmn, (7)

one can then transform the left-hand side of (5) to

−

∫ 1

−1

∫ 1

−1
ln |x− y|Φ′(x)Φ′(y) dxdy =

∞
∑

m,n=0

Amnφmφn = (Aφ, φ), (8)

where A is the diagonal matrix of infinite dimension with the elements

Amn =
π2

2
(m + 1)δmn.

The obvious consequence of (8) is that the quadratic form (Aφ, φ) is positive definite. On
the other side,

∫ 1

−1
Φ2(x) dx =

∞
∑

m,n=0

Bmnφmφn = (Bφ, φ),

with

Bmn =

∫ 1

−1
Um(x)Un(x)(1− x2) dx =

=

{

0 if m + n is odd,
4(m+1)(n+1)

(m+n+3)(m+n+1)(m−n+1)(n−m+1) otherwise.

Mention that the quadratic form (Bφ, φ) is also symmetric and positive definite.



An inequality for a quadratic functiona 157

Let us consider the variational problem of finding the smallest value of Rayleigh’s
quotient

min
φ 6=0

(Aφ, φ)

(Bφ, φ)
= µ.

Obviously, µ is the smallest eigenvalue of the generalized eigenvalue problem

(A − µB)φ = 0,

or, equivalently, λ = 1/µ is the largest eigenvalue of the matrix BA−1. This problem is
solved with the help of Mathematica, and the calculation shows that λ converges quickly
to the numerical value λ = 0.274933 (already with 15×15-matrix). So, the inequality (5) is
valid for µ = 3.63725, and the equality is achieved if φ = φ(1), φ(1) being the corresponding
eigenvector. The graph of Φ(x) =

∑

φ
(1)
n Un(x)w(x) is plotted in Fig. 1.

Fig. 1. The graph of function Φ(x) for which (5) becomes an equality

Note that the analogous inequality for Φ(x) ∈ W 1,2(R) does not exists. Indeed, for
Φ(x) ∈ W 1,2(R) we have

−

∞
∫

−∞

∞
∫

−∞

ln |x− y|Φ′(x)Φ′(y) dxdy =

∞
∫

−∞

H(Φ′)(x)Φ(x) dx (9)

where H(f) denotes the Hilbert transform of the function f(x). Using the property of the
Hilbert and Fourier transforms we can write this in the form

−

∞
∫

−∞

∞
∫

−∞

ln |x− y|Φ′(x)Φ′(y) dxdy =

∞
∫

−∞

|t|Φ̃2(t) dt,
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where f̃(t) denotes the Fourier transform of f(x). Thus, the quadratic form (9) is positive
definite. On the other side

∞
∫

−∞

Φ2(x) dx =

∞
∫

−∞

Φ̃2(t) dt

due to the Plancherel identity. Thus, the inequality
∞
∫

−∞

|t|Φ̃2(t) dt ≥ µ

∞
∫

−∞

Φ̃2(t) dt

would be violated by the functions Φ̃(t) which are positive inside the small interval (−ε, ε)
and vanish outside it.
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BẤT ĐẲNG THỨC CỦA MỘT PHIẾM HÀM BẬC HAI

Một bất đẳng thức được chứng minh cho một phiếm hàm bậc hai với nhân lôgarít.
Các hằng số tốt nhất của bất đẳng thức này và hàm tương ứng với đẳng thức xảy ra được
tìm thấy một cách chính xác.


